MTH512-Course Portfolio-Fall 2019

Ayman Badawi

Table of contents
Table of contents
${ }_{1}$ Section 1: Syllabus 2
${ }^{2}$ Section 3: Handouts and other Materials 7
2. Reviews for Exam One 8
22 H
11
11
${ }^{23}$ Solution to HW I 13
${ }^{2}+\mathrm{HW}^{2}$ 24
${ }_{25}$ Solution to HW II 28
${ }^{26}$ H. ${ }^{\circ}$
32
32
27 Solution to HW III 34
28 Hulv
46
46
${ }_{22}$ Solution to HW IV 48
2ω sout to HWV 57
2ll soution to HWV 59
1
68
68
23 Solution to HW VI 70
${ }^{2} \mathrm{HW}$ VII 81
215 Solution to HW VII 83
${ }^{2} 5 \mathrm{HW}$ VIII 92
2. Solution to HW VIII 94
2.18 Handout on Jordan and Rational forms 104
3 Section 5: Two Exams and Final 116
3. Exam One 117
32 Solution to Exam I 123
3.3 Exam Wo 128
34 Solution to Exam II 130
3.5 Final Exam 134

1 Section 1: Syllabus

A	Course Title \& Number	ADVANCED LINEAR ALGEBRA: MTH 512				
B	Pre/Co-requisite(s)	Admission to MSMTH program				
C	Number of credits	3				
D	Faculty Name	Ayman Badawi				
E	Term/ Year	Fall 2019				
G	Instructor Information		uctor	Office	Telephone	Email
		Aym	Badawi	NAB 262	065152573	abadawi@aus.edu
		Office Hours: By appointment				
H	Course Description from Catalog	Topics include the proof-based theory of matrices, determinants, vector spaces, linear spaces, linear transformations and their matrix representations, linear systems, linear operators, eigenvalues and eigenvectors, invariant subspaces of operators, spectral decompositions, functions of operators, and applications to science, industry, and business.				
I	Course Learning Outcomes	Upon	pletion of . Write 2. Demo 3. Solve 4. Demo Demo opera Demo applic Apply	ourse, stu for simple an unders alyze mat an unders an unders inner-prod an unders of linear a learned in	ll be able to: ns. of vector space ng eigenvalues of canonical fo of inner-produ e. of spectral theo gebra, for exa	spaces and change of basis. genvectors. nd Jordan forms. ces, norms, orthonormal bases, gular value decomposition and east Square Method.
J	Textbook and other Instructional Material and Resources	Secondary: Sheldon Axler, Linear Algebra Done Right, 1997(any Edition will do). The book is available on the web as free download. Any E-text book treats the above concepts will do.				
K	Teaching and Learning Methodologies	The teaching and learning tools used in this course to deliver the subject matter include black board with chocks (if available) but the current white board and markers will do, formal lectures, class discussions.				
L	Grading Scale,	Grading Scale				
	Due Dates	Excellent				
		A	Equals 4	de points		
		Meet Expectation				
		A-	Equals 3	de points		
		B+	Equals 3	de points		
		B	Equals 3	de points		

SCHEDULE (BUT NOT IN ORDER)

No addendum, make-up exams, or extra assignments to improve grades will be given.

\#	WEEK	CHAPTER/SECTIONS	NOTES
1	1	Vector Spaces	Definition
			Examples
2	Subspaces and Direct Sums	Definition	

4	2	Span, Linear Independence, Bases, Dimension , and Linear Transformation	Examples Proofs of some simple results
6	1	Exam 1	
7	2	Eigenvalues, Eigenvectors, and Invariant Subspaces on Real Vector Spaces	Examples Using the methods in analyzing some basic facts on matrices
9	2	Inner Products, Orthonormal Bases, Orthogonal Projections and Minimization Problems (Least Square Method)	Definition Examples Simple proofs Application
11	1	Operators on Inner-Product Spaces	Examples Simple and Basic Proofs
12	1	Exam 2	Exam 2 : Covers all materials after Exam 1
13	1	The Characteristic polynomial and the minimal polynomial of an operator, and its decomposition	Examples Simple Proofs
14	1	Canonical forms, Rational and Jordan Forms	Definition Examples

15	1	Spectral theory, Singular Value Decomposition	Examples
16	1	Review before a comprehensive final exam	

${ }_{2}$ Section 3: Handouts and other Materials

2.1 Reviews for Exam One

Review Exam one MTH 512, Fall 2019

Ayman Badawi

REMARK 1. You should know the following concepts

(i) Orthogonal, Orthonormal and how to make orthogonal basis an orthonormal basis.
(ii) Solving system of linear equations (in particular homogeneous system) and write the solution set as span of orthogonal (orthonormal) basis.
(iii) The meaning of Independent number (dimension) and how to find this number if a subspace is given.
(iv) If Q lives in span of independent points ($\operatorname{say} Q_{1}, Q_{2}, \ldots, Q_{k}$), then there exist UNIQUE real numbers a_{1}, \ldots, a_{k} such that $Q=a_{1} Q_{1}+\ldots+a_{k} Q_{k}$
(v) nonzero Orthogonal points imply independent but not vice-versa.
(vi) $C D=L$ (say C is $n \times k$ and D is $k \times m$). Then each column of L is a linear combination of Columns of C. Let C_{1}, \ldots, C_{k} be the columns of C. Then for example, the fourth column of $\mathrm{L}, L_{4}=d_{1,4} C_{1}+d_{2,4} C_{2}+\ldots+d_{k, 4} C_{k}$ (where $d_{1,4}, \ldots, d_{k, 4}$ are the numbers in the fourth column of D .
(vii) You should be aware of the METHOD that I discussed in class, how to check if Q_{1}, \ldots, Q_{n} are independent or not
(viii) $\operatorname{Rank}(A)+\operatorname{Nullity}(A)=$ number of columns of A [note $\operatorname{Nullity}(A)=\operatorname{IN}$ (Solution set of the homogeneous system $A X=O)=$ number of free variables]
(ix) Show that a subset of R^{n} is a subspace by writing the set as Span of some points (and then a span of independent points).
(x) A subset $D=\{(, \quad, \ldots) \mid a, b, c,, d \ldots \in R\}$ of R^{n} is a subspace IFF D can be rewritten so that each coordinate is a linear combination of the linear variables a, b, c, d, \ldots (see class notes)
(xi) Let say A is $n \times n$. Is 4 an eigenvalue of A ? It might be difficult to find the roots of $C_{A}(\alpha)$. Hence an easy way to answer the question is to find $\operatorname{Rank}\left(4 I_{n}-A\right)$). If the Rank $=\mathrm{n}$, the answer is no (hence A is invertible). If the Rank is $<\mathrm{n}$, then the answer is yes.
(xii) Let say A is $n \times n$. Is 4 an eigenvalue of A ?If yes, then find E_{4}. It might be difficult to find the roots of $C_{A}(\alpha)$. Hence an easy way to answer the question (note that here you need to find E_{4}) is to find the solution set of the homogeneous system $\left(4 I_{n}-A\right) X=0$.
(xiii) Understand the meaning of eigenvalue, eigenvector (eigen-point).
(xiv) $\mathrm{A}(k \times m)$ is row equivalent to B (assume 7 row operation applied on A in order to get B). You should know how to go back from B to A (see class notes). You should be able to find 7 elementary matrices (each is of size $k \times k$), say E_{1}, \ldots, E_{7} such that $E_{1} E_{2} \cdots E_{7} A=B$. Also you should know how to find 7 elementary matrices F_{1}, \ldots, F_{7} (again each is $k \times k$) such that $F_{1} F_{2} \cdots F_{7} B=A$.
(xv) Meaning of diagnolizable over R and how to find D and Q. (see Class Notes)
(xvi) How to check if A is diagnolizable over R or not (see class notes, big Theorem).
(xvii) how to calculate determinant using ROW-Operations.
(xviii) $C_{A}(\alpha)=\left|\alpha I_{n}-A\right|$ (note other books they use $\left|A-\alpha I_{n}\right|$). Using our notation, $|A|$ is (plus or minus) the constantterm of $C_{A}(\alpha)$. Trace of (A) ALWAYS equal - (coefficent of x) in $C_{A}(\alpha)$. (I think I told you I am not sure if I need minus, now I confirm yes it is always minus). For example if $C_{A}(\alpha)=\alpha^{3}+7 \alpha-22$. Then $|A|=($ plus, minus $) 22$, but Trace $(\mathrm{A})=-7$.
(xix) Let α be a real number, A be $n \times n$. Then
a. $|\alpha A|=\alpha^{n}|A|$.
b. If A is invertible (nonsingular), then $\left|A^{-1}\right|=1 /|A|$.
c. If A is similar to B (i.e., $A=D B D^{-1}$), then $|A|=|B|$, and $C_{A}(\alpha)=C_{B}(\alpha)$
d. If A is invertible and a is an eigenvalue of A, then $1 / a$ is an eigenvalue of A^{-1} (easy proof)
e. If a is an eigenvalue of A, then a^{k} is an eigenvalue of A^{k}.
f. $|A+B|$ NEED NOT EQUAL $|A|+|B|$ (you can find an example easily)
g. $|A|=\left|A^{T}\right|$ and $C_{A}(\alpha)=C_{A^{T}}(\alpha)$.
(xx) If A is invertible, you need to know how to find A^{-1} using the METHOD $\left[A \mid I_{n}\right]$ ROW-OPERATIONS $\left[I_{n} \mid A^{-1}\right]$. Recall if A is 2×2 and invertible, then it is easy to find $A^{-1}, A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then $|A|=a d-b c$. If $|A| \neq 0$, then $A^{-1}=\frac{1}{|A|}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
(xxi) $\operatorname{Rank}(A)=\operatorname{Rank}\left(A^{T}\right)$
(xxii) If A is row-equivalent to B, then $\operatorname{Rank}(A)=\operatorname{Rank}(B)$ (easy)
xxiii) If A has exactly k independent rows, then A has exactly k independent columns.
xxiv) Assume A is 3×4. Assuming A is row equivalent to $B=\left[\begin{array}{llll}2 & 0 & 4 & 3 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0\end{array}\right]$. Then
a. Quickly, $\operatorname{Rank}(\mathrm{A})=\operatorname{Rank}(\mathrm{B})=2$.
b. Recall $\operatorname{Row}(A)=$ span of rows of A and $\operatorname{Row}(A)=\operatorname{span}\left\{R_{1}, R_{2}\right\}=\operatorname{span}\{(2,0,4,3),(0,0,1,7)\}$. What does that mean? EACH ROW OF A is a linear combination of $(2,0,4,3)$ and ($0,0,1,7$) (nice meaning!)
c. Recall $\operatorname{Col}(\mathrm{A})=$ Span columns of A. Recall how to find basis to the column space of A. Stare at B, locate the columns in B that have "leaders". Here, we have B_{1} and B_{3}. A basis for $\operatorname{Col}(\mathrm{A})$ must be chosen from A and not from B (why? because we are using ROW-operations on A (not Column operations), so we cannot gurantee that the column of B "live" inside $\operatorname{Col}(\mathrm{A})$). Since the leaders in B are located in B_{1}, B_{3}, we choose A_{1}, A_{3} to form a basis for $\operatorname{Col}(\mathrm{A})$. Hence $\operatorname{Col}(A)=\operatorname{Span}\left\{A_{1}, A_{3}\right\}$. Again, what does that mean? Each column of A is a linear combination of A_{1} and A_{3}.
(xxv) Let $B=\{D=(2,0,3), T=(0,-1,2), L=(0,0,1)\}$ be a basis for R^{3} and $F=(4,5,9) \in R^{3}$. Find $[F]_{B}$ and explain the meaning of your answer. We know that $[F]_{B}=Q^{-1} F^{T}$ (see class notes), where Q is an invertible 3×3 matrix, First Column of $\mathrm{Q}\left(Q_{1}\right)$ is the point D^{T}, Q_{2} is the point T^{T} and Q_{3} is the point L^{T}. Now enjoy the calculation. Assume the answer is $[F]_{B}=\left(c_{1}, c_{2}, c_{3}\right)$. This means that $F=(4,5,9)=c_{1} D+c_{2} T+c_{3} L$.
xxvi) If you need to check your calculation, I recommend the following online Calculators:
(1) Linear Algebra Tool Kit (Strongly RECOMMENDED)
(2) GRAM-SCHMIDT CALCULATOR
(3) CHARACTERISTIC POLYNOMIAL CALCULATOR
(4) EIGENVALUE AND EIGENVECTOR CALCULATOR
(5) DIAGONALIZE MATRIX CALCULATOR
(I will add these LINKS soon in Lectur/Notes Folder on I-Learn)

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com
2.2 HW I

Assignment I MTH 512 , Fall 2019

Ayman Badawi

QUESTION 1. Let Q_{1}, Q_{2}, Q_{3} be independent points in R^{n} such that $\operatorname{span}\left\{Q_{1}, Q_{2}, Q_{3}\right\} \neq R^{n}$.
(i) What is the smallest n so that $Q_{1}, Q_{2}, Q_{3} \in R^{n}$?
(ii) Prove that $Q_{1}+Q_{2}, Q_{1}+Q_{3}, Q_{2}+Q_{3}$ are independent points in R^{n}.
(iii) Assume that Q_{1}, Q_{2}, Q_{3} are orthogonal and $L=\operatorname{span}\left\{Q_{1}, Q_{2}, Q_{3}\right\}$. Given $Q \in L$. Hence $Q=a_{1} Q_{1}+a_{2} Q_{2}+a_{3} Q_{3}$ for some real numbers a_{1}, a_{2}, a_{3}. Prove that $a_{1}=\frac{Q \cdot Q_{1}}{\left\|Q_{1}\right\|^{2}}, a_{2}=\frac{Q \cdot Q_{2}}{\left\|Q_{2}\right\|^{2}}, a_{3}=\frac{Q \cdot Q_{3}}{\left\|Q_{3}\right\|^{2}}$.
QUESTION 2. Let $D=\operatorname{span}\{(2 a+3,-b+1,6 a-2 b+11,0) \mid a, b \in R\}$
(i) Convince me that D is a subspace of R^{4}. (I guess, it is enough to rewrite D as span)
(ii) Find an orthogonal basis for D.

QUESTION 3. Let $A=\left[\begin{array}{cccc}5 & 3 & 1 & 1 \\ 1 & 3 & -1 & 0 \\ 2 & -6 & 4 & 1 \\ 4 & -12 & -4 & 1\end{array}\right]$. Is 6 an eigenvalue of A ? If yes, then find E_{6} and find an orthogonal basis for E_{6}.

QUESTION 4. Let A be an $n \times n$ matrix and r be a fixed real number. Suppose that the sum of all numbers (entries) of each row of A equals to r. Prove that r is an eginvalue of A.

QUESTION 5. Given A is a 4×4 matrix such that $A \overbrace{3 R_{2}} B \overbrace{-6 R_{1}+R_{4} \rightarrow R_{4}} C \overbrace{R_{3} \leftrightarrow R_{2}} D \overbrace{-2 R_{2}} F=$ $\left[\begin{array}{cccc}0 & 0 & 4 & 6 \\ 1 & 3 & -1 & 0 \\ 0 & -6 & 4 & 1 \\ 4 & 12 & -4 & 2\end{array}\right]$. Find $|A|,|C|$, and $|D|$.

QUESTION 6. (i) Convince me that $L=\left\{\left(a, b^{3}, 0\right) \mid a, b \in R\right\}$ is a subspace of R^{3}.
(ii) Convince me that $L=\left\{\left(a, 0, b^{2}\right) \mid a, b \in R\right\}$ is not a subspace of R^{3}.
(iii) Convince me that $L=\left\{\left(b, b^{3}, 0\right) \mid b \in R\right\}$ is not a subspace of R^{3}.
(iv) Convince me that 3 is not an eiginvalue of $A=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 0\end{array}\right]$
(v) Let A be a 4×4 matrix such that A_{2} (second column of A) is identical to A_{4} (4th column of A). Consider the following system of L. E. $\quad A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=A_{2}$. Convince me that the system has infinitely many solutions. Give me 3 distinct points that belong to the solution set of the system.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

${ }_{2.3}$ Solution to HW I

Name: Fatah Ajeeb
ID: 900077394
Assignment I:MTH $512 \quad \frac{47}{50}$

* Question 1.
i) The smallest n so that $Q_{1}, Q_{2}, Q_{3} \in \mathbb{R}^{n}$ is 4 since if we take $n=3$ and $Q_{1}=(1,0,0)$

$$
\begin{aligned}
& Q_{1}=(1,0,0) \\
& Q_{2}=(0,1,0) \\
& Q_{3}=(0,0,1)
\end{aligned}
$$

hen $\operatorname{span}\left\{Q_{1}, Q_{2}, Q_{3}\right\}=\mathbb{R}^{3} \quad$ (contradiction)
ii) To prove that $Q_{1}+Q_{2}, Q_{1}+Q_{3}, Q_{2}+Q_{3}$ ore independent in \mathbb{R}^{n} we need to prove that the only solution of:

$$
\begin{aligned}
& a\left(Q_{1}+Q_{2}\right)+b\left(Q_{1}+Q_{3}\right)+c\left(Q_{2}+Q_{3}\right)=0 \text { is } a=b=c=0 \\
\text { so } & a Q_{1}+a Q_{2}+b Q_{1}+b Q_{3}+c Q_{2}+c Q_{3}=0 \\
\Rightarrow & (a+b) Q_{1}+(a+c) Q_{2}+(b+c) Q_{3}=0
\end{aligned}
$$

since Q_{1}, Q_{2} and Q_{3} are independent in \mathbb{R}^{n} then

$$
\left.\begin{array}{rl}
& a+b=0 \quad, a+c=0, \text { and } \quad b+c=0 \\
\Rightarrow & b=-a \\
c=-a
\end{array}\right\}-a-a=0 \Rightarrow-2 a=0 \quad \Rightarrow \quad a=b=c=0
$$

thus $\left(Q_{1}+Q_{2}\right),\left(Q_{1}+Q_{3}\right),\left(Q_{2}+Q_{3}\right)$ are independent in \mathbb{R}^{n}
 and $Q=a_{1} Q_{1}+a_{2} Q_{2}+a_{3} Q_{3}$
. For Q_{1} : $Q_{1} Q_{1}=a_{1} Q_{1} Q_{1}+a_{2} Q_{2} Q_{1}+a_{3} Q_{3} Q_{1}$

$$
\begin{aligned}
& \Rightarrow Q_{1} Q_{1}=a_{1}\left\|Q_{1}\right\|^{2}+0+0 \quad \text { (because they } \\
& \Rightarrow Q_{1}=\frac{Q . Q_{1}}{\left\|Q_{1}\right\|^{2}}
\end{aligned}
$$

For a_{2} : $Q_{\cdot} Q_{2}=a_{1} Q_{1} Q_{2}+a_{2} Q_{2} Q_{2}+a_{3} Q_{3} Q_{2}$

$$
\begin{aligned}
& Q \cdot Q_{2}=0+a_{2}\left\|Q_{2}\right\|^{2}+0 \\
\Rightarrow & a_{2}=\frac{Q_{1} Q_{2}}{\left\|Q_{2}\right\|^{2}}
\end{aligned}
$$

. For $a_{3}: Q_{3} Q_{3}=a_{1} Q_{1} Q_{3}+a_{2} Q_{2} Q_{3}+a_{3} Q_{3} Q_{3}$

$$
\begin{aligned}
& Q \cdot Q_{3}=0+O+a_{3}\left\|Q_{3}\right\|^{2} \\
\Rightarrow & Q_{3}=\frac{Q_{1} \cdot Q_{3}}{\left\|Q_{3}\right\|^{2}}
\end{aligned}
$$

* Question 2: $D=\operatorname{span}\{(2 a+3,-b+1, b a-2 b+11, u) \mid a, b \in \mathbb{R}\}$
i)

$$
\begin{aligned}
D & =\{(2 a+3,-b+1,6 a+9-2 b+2,0) \mid a, b \in \mathbb{R}\} \\
& =\{(2 a+3)(1,0,3,0)+(-b+1)(0,1,2,0) \mid a, b \in \mathbb{R}\} \\
& =\operatorname{span}\{(1,0,3,0),(0,1,2,0)\}
\end{aligned}
$$

thus D is a subspace of \mathbb{R}^{4} because it can be written as span.
ii) Ret $Q_{1}=(1,0,3,0)$ and $Q_{2}=(0,1,2,0)$ $\left\{\omega_{1}, \omega_{2}\right\}$ is the or thogonal basis of D where:

$$
\begin{aligned}
w_{1} & =Q_{1}=(1,0,3,0) \\
w_{2} & =Q_{2}-\frac{Q_{2}, w_{1}}{\left\|w_{1}\right\|^{2}} w_{1} \\
& =(0,1,2,0)-\frac{6}{10}(1,0,3,0) \\
& =(0,1,2,0)-\left(\frac{3}{5}, 0, \frac{9}{5}, 0\right) \\
& =\left(-\frac{3}{5}, 1, \frac{1}{5}, 0\right)
\end{aligned}
$$

thus $\left\{(1,0,3,0),\left(-\frac{3}{5}, 1, \frac{1}{5}, 0\right)\right\}$ is the orthogonal basis of D.

$$
\text { * Question 3: } A=\left[\begin{array}{cccc}
5 & 3 & 1 & 1 \\
1 & 3 & -1 & 0 \\
2 & -6 & 4 & 1 \\
4 & -12 & -4 & 1
\end{array}\right]
$$

To see if 6 is an eigenvalue of A, we need to show that $\{(0,0,0,0)\}$ is not the solution set of: $\left(6 I_{4}-A\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$

$$
\left(\begin{array}{cccc}
1 & -3 & -1 & -1 \\
-1 & 3 & 1 & 0 \\
-2 & 6 & 2 & -1 \\
-4 & 12 & 4 & 5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

$$
\begin{aligned}
& \Rightarrow\left(\begin{array}{cccc|c}
x_{1} & x_{2} & x_{3} & x_{4} \\
1 & -3 & -1 & -1 & 0 \\
-1 & 3 & 1 & 0 & 0 \\
-2 & 6 & 2 & -1 & 0 \\
-4 & 12 & 4 & 5 & 0
\end{array}\right) \xrightarrow{\substack{ \\
R_{1}+R_{2} \rightarrow R_{2} \\
2 R_{1}+R_{3} \rightarrow R_{3} \\
4 R_{1}+R_{4}-R_{4}}}\left(\begin{array}{cccc|c}
1 & -3 & -1 & -1 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \\
& \Rightarrow \begin{cases}x_{4}=0 \\
x_{1}-3 x_{2}-x_{3}=0\end{cases}
\end{aligned}
$$

so the solution set $=\{(3 a+b z, a, b, 0\} a, b \in \mathbb{R}\}$

$$
=\{a(3,1,0,0)+b(1,0,1,0) \mid a, b \in R\}
$$

so $E_{6}=\operatorname{span}\{(3,1,0,0),(1,0,1,0)\}$ thus 6 is an eigenvalue of A.

- Question 3:
let $Q_{1}=(3,1,0,0)$ and $Q_{2}=(1,0,1,0)$ $\left\{\omega_{1}, \omega_{2}\right\}$ is the orthogonal basis for E_{6} where

$$
\begin{aligned}
w_{1} & =Q_{1}=(3,1,0,0) \\
w_{2} & =Q_{2}-\frac{Q_{2} \cdot w_{1}}{\left\|w_{1}\right\|^{2}} w_{1} \\
& =(1,0,1,0)-\frac{3}{10}(3,1,0,0) \\
& =\left(\frac{1}{10},-\frac{3}{10}, 1,0\right)
\end{aligned}
$$

thus $\left\{(3,1,0,0),\left(\frac{1}{10},-\frac{3}{10}, 1,0\right)\right\}$ is the or thogonal basis for E_{6}.

* Question 4: diet A be $n \times n$ matrix and r a fixed real number where the sum of all numbers of each row of A is equal to r.
Now consider the non-zero point $Q=(1,1, \ldots, 1) \in \mathbb{R}^{n}$ (all entries of Q is 1)

$$
\left.\cdot A Q^{\top}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{n n} \\
a_{21} & a_{12} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & \cdots \times a_{n n}
\end{array}\right) \underset{(n \times 1)}{(n} \begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)=\left(\begin{array}{c}
a_{11}+a_{12}+\cdots+a_{n n} \\
a_{21}+a_{22}+\cdots+a_{2 n} \\
\vdots \\
a_{n 1}+a_{n 2}+\cdots+a_{n n}
\end{array}\right)=\underset{(n \times 1)}{\left(\begin{array}{c}
r \\
\vdots \\
r
\end{array}\right)}
$$

and $r Q^{\top}=r\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)=\left(\begin{array}{c}r \\ r \\ \vdots \\ r\end{array}\right)$
thus $A Q^{\top}=r Q^{\top}$
So r is an eigen value of A because there exists a nonzero point in \mathbb{R}^{n}, Q, such that $A Q^{\top}=r Q^{\top}$

$$
\begin{aligned}
& \text { * Question 5: } F=\left[\begin{array}{cccc}
0 & 0 & 4 & 6 \\
1 & 3 & -1 & 0 \\
0 & -6 & 4 & 1 \\
4 & 12 & -4 & 2
\end{array}\right] \\
& |F|=(-1)^{1+3} \cdot 4\left|\begin{array}{ccc}
1 & 3 & 0 \\
0 & -6 & 1 \\
4 & 12 & 2
\end{array}\right|+(-1)^{1+4} \cdot 6\left|\begin{array}{ccc}
1 & 3 & -1 \\
0 & -6 & 4 \\
4 & 12 & -4
\end{array}\right| \\
& =4\left[(-1)^{41} \cdot 1\left|\begin{array}{cc}
-6 & 1 \\
12 & 2
\end{array}\right|+(-1)^{1+2} \cdot 3\left|\begin{array}{cc}
0 & 1 \\
4 & 2
\end{array}\right|\right]-6\left[\left.\begin{array}{cc}
(-1)^{1+1} \cdot 1| | c c \mid \\
-6 & 4 \\
12 & -4
\end{array}\left|+(-1)^{3+1} \cdot 4\right| \begin{array}{cc}
3 & -1 \\
-6 & 4
\end{array} \right\rvert\,\right] \\
& =4[(-12-12)-3(-4)]-6[(24-48)+4(12-6)] \\
& =4(-24+12)-6(-24+24) \\
& =-48 .
\end{aligned}
$$

$$
\text { so }|F|=-48
$$

$D \xrightarrow{-2 R_{2}} F$ thus $|F|=-2|D| \Rightarrow|D|=-\frac{1}{2}|F|=24$
$C \xrightarrow{R_{B} \omega R_{2}} D$ thus $|O|=-|C| \Rightarrow|C|=-24$
$B \xrightarrow{-6 R_{1} R_{4} \rightarrow R_{4}} C$ thus $|C|=|B| \Rightarrow|B|=-24$
$A \xrightarrow{3 R_{2}} B$ thus $|B|=3|A| \Rightarrow|A|=\frac{1}{3}|B|=-8$
$4 / 0$
page: 4

* Question 6:
i) $L=\left\{\left(a, b^{3}, 0\right) \mid a, b \in \mathbb{R}\right\}$
- axiom 1: $\operatorname{det} Q_{1}, Q_{2} \in L$ then $Q_{1}=\alpha_{1} a+\alpha_{2} b^{3}+0$ For some cont $\alpha_{1} \alpha_{2}$ $Q_{2}=\beta_{1} a+\beta_{i} b^{3}+0$ for some canst. $\beta_{2} \beta_{2}$
thus $Q_{1}+Q_{2}=\left(\alpha_{1}+\beta_{1}\right) a+\left(\alpha_{2}+\beta_{2}\right) b^{3}+0$
So $Q_{1}+Q_{2} \in L$
. axiom 2: $\operatorname{det} Q \in L$ and α be a constant
then $Q=\alpha_{1} a+\alpha_{2} b^{3}+0$
and $\alpha Q=\left(\alpha \alpha_{1}\right) a+\left(\alpha \alpha_{2}\right) b^{3}+0$
so $\alpha Q \in L$
-axiom 3: take $a=b=0$ thus $(0,0,0) \in L$ So L is a subspace of \mathbb{R}^{3}.
(ii) $L=\left\{\left(a, 0, b^{2}\right) \mid a, b \in \mathbb{R}\right\}$

Take $Q=(0,0,4) \in L$ where $a=0$ and $b=2$ and consider $\alpha=-1$
Hus $\alpha Q=(0,0,-4) \notin L$
thus L is not a subspace of \mathbb{R}^{3} since axiom 2 fails.

* Question 6 .
iii) $L=\left\{\left(b, b^{3}, 0\right) \mid b \in \mathbb{R}\right\}$

Take $Q=(1,1,0) \quad \in L$ such that $b=1$ and consider $\alpha=2$
then $\alpha Q=(2,2,0) \notin L$
thus L is not a subspace of \mathbb{R}^{3}
iv) Let us find the solution set of $\left(3 I_{4}-A\right) X=0$

$$
\begin{aligned}
& \left(\begin{array}{cccc}
3 & 0 & 0 & 0 \\
-1 & 3 & 0 & 0 \\
0 & -1 & 3 & -4 \\
0 & 0 & -1 & 3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& \left(\begin{array}{cccc:c}
3 & 0 & 0 & 0 & 0 \\
-1 & 3 & 0 & 0 & 0 \\
0 & -1 & 3 & -4 & 0 \\
0 & 0 & -1 & 3 & 0
\end{array}\right) \xrightarrow{\frac{1}{3} R_{1}} \underset{R_{R}}{R_{R}}\left(\begin{array}{cccc:c}
1 & 0 & 0 & 0 & 0 \\
-1 & 3 & 0 & 0 & 0 \\
0 & -1 & 3 & -4 & 0 \\
0 & 0 & -1 & 3 & 0 \\
& L_{1} R_{1} R_{2} \rightarrow R_{2}
\end{array}\right) \\
& \left(\begin{array}{cccc:c}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & -1 & 3 & -4 & 0 \\
0 & 0 & -1 & 3 & 0
\end{array}\right) \quad \begin{array}{l}
\frac{1}{3} R_{2} \\
0
\end{array}\left(\begin{array}{cccc:c}
1 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & -1 & 3 & -4 & 0 \\
0 & 0 & -1 & 3 & 0
\end{array}\right) \\
& 1 R_{2}+R_{3} \rightarrow R_{3} \\
& \left(\begin{array}{cccc:c}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 3 & -4 & 0 \\
0 & 0 & -1 & 3 & 0
\end{array}\right) \xrightarrow{\frac{1}{3} R_{3}}\left(\begin{array}{cccc:c}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -4 / 3 & 0 \\
0 & 0 & -1 & 3 & 0
\end{array}\right) \text { page: } 5
\end{aligned}
$$

$$
\xrightarrow{R_{3}+R_{4} \rightarrow R_{4}}\left(\begin{array}{cccc|c}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -4 / 3 & 0 \\
0 & 0 & 0 & 5 / 3 & 0
\end{array}\right)
$$

M / η
${ }_{5}^{3} \mathrm{Ru}_{4}$

$$
\left(\begin{array}{cccc:c}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & -4 / 3 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \xrightarrow{\frac{4}{3} R_{4}+R_{3} \rightarrow R_{3}}\left(\begin{array}{llll:l}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

thus Solution set of $\left(3 I_{4}-A\right) X=0$ is $\{(0,0,0,0)\}$
therefore 3 is not an eigenvalue of A.
v) Let A be a 4×4 matrix where $A_{2}=A_{4}$ (columns)
solve the system $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=A_{2}$

$$
\begin{aligned}
& \Rightarrow A_{2}=x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}+x_{4} A_{4} \\
& \quad A_{2}=x_{1} A_{1}+\left(x_{2}+x_{4}\right) A_{2}+x_{3} A_{3} \\
& \text { thus }\left\{\begin{array} { l }
{ x _ { 1 } = 0 } \\
{ x _ { 2 } + x _ { 4 } = 1 } \\
{ x _ { 3 } = 0 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ x _ { 1 } = 0 } \\
{ x _ { 2 } = 1 - x _ { 4 } } \\
{ x _ { 3 } = 0 }
\end{array} \quad \left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=1-a \\
x_{3}=0 \\
x_{4}=a
\end{array}\right.\right.\right.
\end{aligned}
$$

thus the solution set of $A X=A_{2}=\{(0,1-a, 0, a) \mid a \in \mathbb{R}\}$ so it has infinitely many solutions
and $(0,0,0,1),(0,-1,0,2),(0,-2,0,3)$ are 3 distinct points that belong to the solvion set of the system.
2.4 HW II
2.4 HW H
-
2 HW II
${ }_{2.4}^{4}$ HW II
\square

-

Assignment II MTH 512 , Fall 2019

Ayman Badawi

QUESTION 1. Let $F: R^{4} \rightarrow R^{3}$, be a linear transformation. $B=\{(1,0,2,0),(0,1,1,0),(0,0,1,1),(-1,0,0,1)\}$ and
$B^{\prime}=\{(1,1,0),(-1,1,0),(-1,-1,1)\}$ be basis for R^{4} and R^{3}, respectively. Given $F(1,0,2,0)=(1,-1,-1)$, $F(0,1,1,0)=(-1,0,1), F(0,0,1,1)=(-2,0,2)$ and $F(-1,0,0,1)=(0,-1,0)$.
(i) Find the matrix presentation of F with respect to B and $B^{\prime}, M_{B, B^{\prime}}$. (i.e., $M_{B, B^{\prime}}=$ "something", I want to see that "something", however to calculate that "something" use software calculator as on I-learn)
(ii) USE (i) and find $[T(2,5,8,2)]_{B, B^{\prime}}$

Note (again) write down clearly the steps, however use software calculator to do the actual calculation
(iii) Use (ii) and find $T(2,5,8,2)$.
(iv) Use (i) and find the standard matrix presentation. (I will not say it again, I want to see how you find M, actual calculations by software calculator)

QUESTION 2. Let $F: R^{4} \rightarrow R^{3}$ such that $T\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\left(2 a_{1}+a_{4},-a_{3}, 4 a_{1}+2 a_{3}+a_{4}\right)$
(i) Write range (F) as span of some independent points.
(ii) Write range (F) as span of orthogonal points
(iii) Does the point $(2,5,9)$ belong to Range(F)? Explain?
(iv) Write $\mathrm{Z}(\mathrm{F})$ as span of some independent points
(v) Find the Standard matrix presentation of F.
(vi) Use (V) and find $T(-2,3,6,1)$

QUESTION 3. Let $F: R^{3} \rightarrow R^{4}$ such that $T(2,0,0)=(1,1,1,1), T(2,2,0)=(-2,-2,-2,-2)$, and $T(-1,-2,1) \in$ $Z(F)$.
(i) Find the standard matrix presentation of F
(ii) write range of F as span of some independent points.
(iii) Write $\mathrm{Z}(\mathrm{F})$ as span of some independent points.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

2.5 Solution to HW II

Assignment II MTH 512 , Fall 2019

Ayman Badawi

QUESTION 1. Let $F: R^{4} \rightarrow R^{3}$, be a linear transformation. $B=\{(1,0,2,0),(0,1,1,0),(0,0,1,1),(-1,0,0,1)\}$ and $B^{\prime}=\{(1,1,0),(-1,1,0),(-1,-1,1)\}$ be basis for R^{4} and R^{3}, respectively. Given $F(1,0,2,0)=(1,-1,-1)$, $F(0,1,1,0)=(-1,0,1), F(0,0,1,1)=(-2,0,2)$ and $F(-1,0,0,1)=(0,-1,0)$.
(i) Find the matrix presentation of F with respect to B and $B^{\prime}, M_{B, D^{\prime}}$. (ie., $M_{B, B^{\prime}}=$ "something", I want to see that "something", however to calculate that "something" use software calculator as on I-learn)

4

$$
M_{B B^{\prime}}=\left[\begin{array}{rrr}
1 & -1 & -1 \\
1 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]^{-1}\left[\begin{array}{rccc}
1 & -1 & -2 & 0 \\
-1 & 0 & 0 & -1 \\
-1 & 1 & 2 & 0
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 1 \\
\frac{-1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & -1 & -2 & 0 \\
-1 & 0 & 0 & -1 \\
-1 & 1 & 2 & 0
\end{array}\right]=\left[\begin{array}{cccc}
-1 & \frac{1}{2} & 1 & -\frac{1}{2} \\
-1 & \frac{1}{2} & 1 & -\frac{1}{2} \\
-1 & 1 & 2 & 0
\end{array}\right]
$$

(ii) USE (i) and find $[T(2,5,8,2)]_{B, B^{\prime}}$

Note (again) write down clearly the steps, however use software calculator to do the actual calculation

$$
B=\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
2 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \quad B^{-1}=\left[\begin{array}{cccc}
-1 & -1 & 1 & -1 \\
0 & 1 & 0 & 0 \\
2 & 1 & -1 & 2 \\
-2 & -1 & 1 & -1
\end{array}\right]
$$

(iii) Use (ii) and find $T(2,5,8,2)$.

(iv) Use (i) and find the standard matrix presentation. (I will not say it again, I want to see how you find M, actual calculations by software calculator)

$$
M=B^{\prime} M_{B, B} B^{-1}=\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & \frac{1}{2} & 1 & -\frac{1}{2} \\
-1 & \frac{1}{2} & 1 & -\frac{1}{2} \\
-1 & 1 & 2 & 0
\end{array}\right]\left[\begin{array}{cccc}
-1 & -1 & 1 & -1 \\
0 & 1 & 0 & 0 \\
2 & 1 & -1 & 2 \\
-2 & -1 & 1 & -1
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
-5 & -4 & 3 & -5 \\
3 & 2 & -2 & 2 \\
5 & 4 & -3 & 5
\end{array}\right]
$$

QUESTION 2. Let $F: R^{4} \rightarrow R^{3}$ such that $T\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\left(2 a_{1}+a_{4},-a_{3}, 4 a_{1}+2 a_{3}+a_{4}\right)$,
(i) Write range (F) as span of some independent points.

$$
\begin{aligned}
& T\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\left.=\left\{a_{1}(2,0,4)+a_{2}(0,0,0)+a_{3}(0,-1,2)+a_{4}(1,0,1)\right) a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{R}\right\} \\
&=\operatorname{span}\{(2,0,4) \cdot(0,0,0) \cdot(0,-1,2) \cdot(1,0,1)\} \\
&=\operatorname{span}\{(2,0,4) \cdot(0,-1,2) \cdot(1,0,1)\} \\
& Q_{1}
\end{aligned}
$$

(ii) Write ranger as span of orthogonal points . For ha is -particular question

$$
\begin{aligned}
w_{1} & =Q_{1}=(2,0,4) \\
w_{2} & =Q_{2}-\frac{Q_{2} \cdot w_{1}}{\left\|w_{1}\right\|^{2}} w_{1}=(0,-1,2)-\frac{(0,-1,2) \cdot(2,0,4)}{\|(2,0,4)\|^{2}}(2,0,4)=\left(-\frac{4}{5},-1, \frac{2}{5}\right) \\
w_{3} & \left.=Q_{3}-\frac{Q_{3} \cdot w_{2}}{\left\|w_{2}\right\|^{2}} w_{2}-\frac{Q_{3} \cdot w_{1}}{\left\|w_{1}\right\|} w_{1}\right\} \\
& =(1,0,1)-\frac{(1,0,1) \cdot\left(-\frac{4}{5},-1, \frac{2}{5}\right)}{\left\|\left(-\frac{4}{5},-1, \frac{2}{5}\right)\right\|^{2}}\left(-\frac{4}{5},-1, \frac{2}{5}\right)-\frac{(1,0,1)-(2,0,4)}{\|\left(2,0,4 \|^{2}\right.}(2,0,4)=\left(\frac{2}{9}, \frac{-2}{9},-\frac{1}{9}\right)
\end{aligned}
$$

(iii) Does the point $(2,5,9)$ belong to Range (F)? Explain?

$$
\left[\begin{array}{cccc}
2 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
4 & 0 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right] \rightarrow\left[\begin{array}{cccc|c}
2 & 0 & 0 & 1 & 2 \\
0 & 0 & -1 & 0 & 5 \\
4 & 0 & 2 & 1 & 9
\end{array}\right] \rightarrow\left\{\begin{array}{l}
a_{1}=\frac{17}{2} \\
a_{2}=\text { froe variable } \\
a_{3}=-5 \\
a_{4}=-15
\end{array}\right.
$$

\therefore YES. because there is at least one point $\in \mathbb{R}^{4}$ such that (iv) Write $\mathrm{Z}(\mathrm{F})$ as span of some independent points $(2,5,9)$.

$$
\text { Sol. Set }=\left\{\left(\frac{17}{2}, a_{2},-5,-15\right)\right\}
$$

$$
\left[\begin{array}{cccc}
2 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
4 & 0 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{cccc|c}
2 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 0 \\
4 & 0 & 2 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{l}
a_{1}=0 \\
a_{2}=\text { free variable } \\
a_{3}=0 \\
a_{4}=0
\end{array}\right.
$$

$$
\begin{aligned}
\text { sol. set } & =\left\{\left(0, a_{2}, 0,0\right) \mid a_{2} \in \mathbb{R}\right\} \\
& =\left\{a_{2}(0,1,0,0) \mid a_{2} \in \mathbb{R}\right\} \\
& =\operatorname{span}\{(0,1,0,0)\}
\end{aligned}
$$

(v) Find the Standard matrix presentation of F.

$$
M=\left[\begin{array}{cccc}
2 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
4 & 0 & 2 & 1
\end{array}\right]
$$

(vi) Use (V) and find $T(-2,3,6,1)$

$$
\left[\begin{array}{cccc}
2 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
4 & 0 & 2 & 1
\end{array}\right]\left[\begin{array}{c}
-2 \\
3 \\
6 \\
1
\end{array}\right]=-2\left[\begin{array}{l}
2 \\
0 \\
4
\end{array}\right]+3\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+6\left[\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right]+1\left[\begin{array}{c}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-6 \\
5
\end{array}\right]
$$

QUESTION 3. Let $F: R^{3} \rightarrow R^{4}$ such that $T(2,0,0)=(1,1,1,1), T(2,2,0)=(-2,-2,-2,-2)$, and $T(-1,-2,1) \in$ $Z(F)$. - T is a Linear Transformation.
(i) Find the standard matrix presentation of F

$$
\begin{aligned}
* T\left(e_{1}\right) & =T(1,0,0)=T\left(\frac{1}{2}(2,0,0)\right)=\frac{1}{2} T(2,0,0)=\frac{1}{2}(1,1,1,1)=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) \\
* T\left(e_{2}\right) & =T(0,1,0)=T\left(-\frac{1}{2}(2,0,0)+\frac{1}{2}(2,2,0)\right)=-\frac{1}{2} T(2,0,0)+\frac{1}{2} T(2,2,0) \\
& =-\frac{1}{2}(1,1,1,1)+\frac{1}{2}(-2,-2,-2,-2)=\left(-\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}\right)+(-1,-1,-1,-1)=\left(\frac{-3}{2},-\frac{3}{2},-\frac{3}{2},-\frac{3}{2}\right) \\
* T\left(e_{3}\right) & =T(0,0,1)=T\left(-\frac{1}{2}(2,0,0)+(2,2,0)+(-1,-2,1)\right)=-\frac{1}{2} T(2,0,0)+T(2,2,0)+T(-1,-2,1) \\
& =-\frac{1}{2}(1,1,1,1)+(-2,-2,-2,-2)+(0,0,0)=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)+(-2,-2,-2,-2)=\left(-\frac{5}{2}, \frac{-5}{2},-\frac{5}{2},-\frac{5}{2}\right)
\end{aligned}
$$

$T\left(e_{1}\right) T\left(e_{2}\right) T\left(e_{1}\right)$

$$
\therefore|M|=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{-3}{2} & -\frac{5}{2} \\
\frac{1}{2} & \frac{-3}{2} & -\frac{5}{2} \\
\frac{1}{2} & \frac{-3}{2} & \frac{-5}{2} \\
\frac{1}{2} & -\frac{3}{2} & \frac{-5}{2}
\end{array}\right]
$$

(ii) write range of F as span of some independent points.
(iii) Write $\mathbf{Z}(\mathbf{F})$ as span of some independent points.
-

$$
\operatorname{Range}(F)=\operatorname{span}\left\{\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)\right\}
$$

Ayman Badawi. Department of Mathematics \& Statistics, American University of Shariah, PO. Box 26666, Shariah, United Arab Emirates. E-mail: abadawiథaus.edu, ww, ayman-badawi.com

$$
\begin{aligned}
\text { Sol. set } & =\left\{\left(3 a_{2}+5 a_{3}, a_{2}, a_{3}\right) \mid a_{2}, a_{3} \in \mathbb{R}\right\} \\
& =\left\{a_{2}(3,1,0)+a_{3}(5,0,1) \mid a_{2}, a_{3} \in \mathbb{R}\right\} \\
& =\operatorname{span}\{(3,1,0),(5,0,1)\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left[\begin{array}{ccc}
\frac{1}{2} & -\frac{3}{2} & -\frac{5}{2} \\
\frac{1}{2} & -\frac{3}{2} & -\frac{5}{2} \\
\frac{1}{2} & \frac{-3}{2} & -\frac{5}{2} \\
\frac{1}{2} & -\frac{3}{2} & -\frac{5}{2}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
\text { Faculty information }
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
\frac{1}{2} & \frac{-3}{2} & -\frac{5}{2} & 0 \\
\frac{1}{2} & \frac{-3}{2} & \frac{-5}{2} & 0 \\
\frac{1}{2} & \frac{-3}{2} & \frac{-5}{2} & 0 \\
\frac{1}{2} & \frac{-3}{2} & \frac{-5}{2} & 0
\end{array}\right] \rightarrow \begin{array}{l}
a_{1}=3 a_{2}+5 a_{3} \\
a_{2}=\text { free variable }
\end{array}\right] \begin{array}{l}
a_{3}=\text { free variable. }
\end{array} \\
& \left.\left[\begin{array}{ccc}
\frac{1}{2} & -\frac{3}{2} & -\frac{5}{2} \\
\frac{1}{2} & -\frac{3}{2} & -\frac{5}{2} \\
\frac{1}{2} & -\frac{3}{2} & -\frac{5}{2} \\
\frac{1}{2} & -\frac{3}{2} & -\frac{5}{2}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
\text { Faculty information }
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
\frac{1}{2} & \frac{-3}{2} & -\frac{5}{2} & 0 \\
\frac{1}{2} & \frac{-3}{2} & \frac{-5}{2} & 0 \\
\frac{1}{2} & \frac{-3}{2} & \frac{-5}{2} & 0 \\
\frac{1}{2} & \frac{-3}{2} & \frac{-5}{2} & 0
\end{array}\right] \rightarrow \begin{array}{l}
a_{1}=3 a_{2}+5 a_{3} \\
a_{2}=\text { free variable }
\end{array}\right] \begin{array}{l}
a_{3}=\text { free variable. }
\end{array} \\
& \left.\left[\begin{array}{ccc}
\frac{1}{2} & -\frac{3}{2} & -\frac{5}{2} \\
\frac{1}{2} & -\frac{3}{2} & -\frac{5}{2} \\
\frac{1}{2} & -\frac{3}{2} & -\frac{5}{2} \\
\frac{1}{2} & -\frac{3}{2} & -\frac{5}{2}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
\text { Faculty information }
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
\frac{1}{2} & \frac{-3}{2} & -\frac{5}{2} & 0 \\
\frac{1}{2} & \frac{-3}{2} & \frac{-5}{2} & 0 \\
\frac{1}{2} & \frac{-3}{2} & \frac{-5}{2} & 0 \\
\frac{1}{2} & \frac{-3}{2} & \frac{-5}{2} & 0
\end{array}\right] \rightarrow \begin{array}{l}
a_{1}=3 a_{2}+5 a_{3} \\
a_{2}=\text { free variable }
\end{array}\right] \begin{array}{l}
a_{3}=\text { free variable. }
\end{array} \\
& \text { Faculty information }
\end{aligned}
$$

${ }_{26}$ HW III

Assignment III, MTH 512 , Fall 2019

Ayman Badawi

QUESTION 1. Let $T: V \rightarrow W$ be a linear transformation between two vector spaces over R, say V and W.
(i) Prove that T is one-to-one if and only if $Z(T)=\left\{0_{V}\right\}$.
(ii) Assume that $T\left(v_{0}\right)=w_{0}$ for some $v_{0} \in V$ and for some $w_{0} \in W$. Prove that $T^{-1}\left(w_{0}\right)=\left\{v_{0}+d \mid d \in Z(T)\right\}$.
(iii) Fix an integer $n \geq 1$, let $C^{n}[R]$ be the vector space of all continuous nth-derivative functions over R. (We know that $C^{n}[R]$ is a vector space, do not show that). Define $T: C^{n}[R] \rightarrow C^{n}[R]$ such that $T(y(x))=a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+$ $\ldots+a_{1} y^{\prime}+a_{0} y$, where $a_{0}, a_{1}, \ldots, a_{n}$ are some fixed real numbers. Show that T is a linear transformation (briefly). Let $d(x) \in C^{n}[R]$ such that $T(d(x))=f(x)$. Show that $T^{-1}(f(x))=\{d(x)+m \mid m \in Z(T)\}$. [Hint: just use (ii), BIG THING: Now we all understand why when solving Linear Diff. Equation, then the solution is $y_{h}+y_{p}$, where y_{h} is the homogeneous part and y_{p} is the particular part].

QUESTION 2. (a) Let $D=\left\{\left.\left[\begin{array}{cc}a+2 b & 3 a+c \\ 5 a+4 b+c & -2 a-4 b\end{array}\right] \right\rvert\, a, b, c \in R\right\}$. Convince me that D is a subspace of $R^{2 \times 2}$. (I guess, it is enough to rewrite D as span). Then find $\operatorname{IN}(\mathrm{D})(\operatorname{dim}(\mathrm{D}))$.
(b) Convince me that $D=\left\{(a+3 b) x^{3}+(-2 a+b) x^{2}+(-a+4 b) x+(2 a-b) \mid a, b \in R\right\}$ is a subspace of P_{4}. Find $I N(D)$.

QUESTION 3. Let $T: P_{4} \rightarrow P_{4}$ such that $T\left(a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}\right)=\left(a_{2}-a_{1}+a_{0}\right) x^{2}+\left(2 a_{2}+a_{0}\right) x+\left(-a_{2}+a_{1}+2 a_{0}\right)$
(i) Find the fake standard matrix presentation of T.
(ii) Find $\mathrm{Z}(\mathrm{T})$.
(iii) Find Range(T).
(iv) Does $x^{2}+3 x-7$ belong to the RANGE(T)?Explain.

QUESTION 4. Let $T: P_{3} \rightarrow R$ such that $T\left(x^{2}\right)=1, T(2 x)=4, T(x+1)=-4$.
(a) Find the fake standard matrix presentation of T.
(b) Find $Z(T)$.
(c) Let $H=\left\{a \in P_{3} \mid T(a)=\pi\right\}$. Find the set H.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

${ }_{27}$ Solution to HW III

QI
(i) $T: V \rightarrow W$
$\leftarrow \operatorname{Suppose} Z(T) \in\left\{O_{V}\right\}$

$$
\begin{aligned}
& \quad T(x)=T(y) \text { for some } x, y \in V \\
& \Rightarrow T(x)-T(y)=O_{w} \\
& \Rightarrow T(x-y)=O_{w} \Rightarrow x-y \in Z(T) \\
& \Rightarrow x-y=O_{v} \Rightarrow x=y
\end{aligned}
$$

\rightarrow Suppose $T: V \rightarrow W$ is 1-1

$$
\begin{aligned}
\text { Suppose } T: V & \rightarrow W \text { is } \\
\text { Let } x \in Z(T) & \Rightarrow T(x)=O_{w}=T\left(O_{v}\right) \\
& \Rightarrow x=O_{v} \text { since } T \text { is } 1-
\end{aligned}
$$

$$
\Rightarrow T(x)=O_{v} \text { since } T \text { is } 1-1
$$

$$
\therefore Z(T)=\left\{O_{V}\right\}
$$

(ii) Let $M=\left\{v_{0}+d \mid d \in Z(T)\right\}$

Show that $M \subseteq T^{-1}\left(w_{0}\right)$
Suppose $x \in M \Rightarrow x=v_{0}+d$ where $d \in Z(T)$.
Then,

$$
\begin{aligned}
\text { pose } \\
\begin{aligned}
T(x) & =T\left(v_{0}+d\right) \\
& =T\left(v_{0}\right)+T(d) \\
& =w_{0}+0 \\
& =w_{0} \\
\Rightarrow T(x) & =w_{0}=T\left(v_{0}\right) \quad \& \quad x \in T^{-1}\left(w_{5}\right)
\end{aligned} \\
\overrightarrow{v i} S x_{0}\left(w_{0}\right) \subseteq M
\end{aligned}
$$

Now that $T^{-1}\left(w_{0}\right) \subseteq M$
Suppose $x \in T^{-1}\left(w_{0}\right)$, then

$$
\begin{aligned}
& T\left(x-v_{0}\right)=T(x)-T\left(v_{0}\right) \\
&=w_{0}-w_{0} \\
&=0 \\
& \Rightarrow x-v_{0} \in Z(T) \Rightarrow \exists d \in Z(T) \text { sot. } d=x-v_{0} \\
& \Rightarrow(\text { i.e. } x\left.=v_{0}+d\right)
\end{aligned}
$$

(1) $\therefore x \in M \Rightarrow T^{-1}\left(\omega_{0}\right) \subseteq M$ and $T^{-1}\left(\omega_{0}\right)=M$

Question (1).

$$
T: V \rightarrow W
$$

(i) (\rightarrow) Assume that T is one-to-one

Show that $Z(T)=\left\{O_{v}\right\}$.
define $E(T)=\left\{V_{0} \in V \mid T\left(V_{0}\right)=O_{w}\right\}$, and we already Know that $T\left(O_{v}\right)=O_{W}$;
Then $T\left(V_{0}\right)=T\left(O_{v}\right)$.
And since T is one -tone;
Then $\quad V_{0}=O_{v}$.
Therefore, $E(T)=\left\{O_{v}\right\}$.
(\leftarrow) Assume that $Z(T)=\left\{O_{v}\right\}$.
show that T is one-to-one.
Let $V_{1}, V_{2} \in V$ such that $T\left(V_{1}\right)=T\left(V_{2}\right)$.
Then we have:

$$
T\left(v_{1}\right)-T\left(v_{2}\right)=O_{w}
$$

since T is a L.T

$$
\begin{aligned}
& T\left(v_{1}\right)+T\left(-v_{2}\right)=0_{\omega} \\
& T\left(v_{1}-v_{2}\right)=0_{w}
\end{aligned}
$$

Then, $V_{1}-V_{2} \in Z(T)$.
And since $Z(T)=\left\{O_{v}\right\}$, then $v_{1}-v_{2}=O_{v}$
Then, $V_{1}=V_{2}$.
\therefore Therefore, T is one-to-one.
(ii) Take $d \in V$ such that $T(d)=O_{w}$.

That's $d \in Z(T)$.
Then $T\left(V_{0}+d\right)=T\left(V_{0}\right)+T(d)<$ since T is a $I . T$

$$
\begin{aligned}
& =w_{0}+O_{w}=w_{0} \\
\therefore T\left(v_{0}+d\right) & =w_{0}
\end{aligned}
$$

$$
\therefore T^{-1}\left(w_{0}\right)=v_{0}+d \int 0_{0} \text { direction }
$$

Therefore, $T^{-1}\left(\omega_{0}\right)=\left\{V_{0}+d \mid d \in Z(T)\right\}$.
(iii)

$$
T(y(x))=a_{n n y}^{(n)}+a_{(n-1)} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y
$$

Take $y_{1} y_{2} \in C^{n}[R]$ and $\alpha_{1}, \alpha_{2} \in \mathbb{R}$.
To show that T is a linear transformation, it's enough to
show $T\left(\alpha_{1} y_{1}+\alpha_{2} y_{2}\right)=\alpha_{1} T\left(y_{1}\right)+\alpha_{2} T\left(y_{2}\right)$.

$$
\begin{aligned}
& T\left(\alpha_{1} y_{1}+\alpha_{2} y_{2}\right)=a_{n}\left[\alpha_{1} y_{1}+\alpha_{2} y_{2}\right]^{(n)}+a_{n-1}\left[\alpha_{1} y_{1}+\alpha_{2} y_{2}\right]^{(n-1)}+\cdots+a_{0}\left[\alpha_{1} y_{1}+\alpha_{2} y_{2}\right] . \\
& =\left(a_{n} \alpha_{1} y_{1}^{(n)}+a_{n} \alpha_{2} y_{2}^{(n)}\right)+\left(a_{n-1} \alpha_{1} y_{1}^{(n-1)}+a_{n-1} \alpha_{2} y_{2}^{(n-1)} \neq \cdots+\left(a_{0} \alpha_{1} y_{1}+a_{0} \alpha_{2} y_{2}\right) .\right. \\
& =\left(a_{n} \alpha_{1} y_{1}^{(n)}+a_{n-1} \alpha_{1} y_{1}^{(n-1)}+\cdots+a_{0} \alpha_{1} y_{1}\right)+\left(a_{n} \alpha_{2} y_{2}^{(n)}+a_{n-1} \alpha_{2} y_{2}^{(n-1)}+\cdots+a_{0} \alpha_{2} y_{2}\right) . \\
& =\alpha_{1}\left(a_{n} y_{1}^{(n)}+a_{n-1} y_{1}^{(n-1)}+\cdots+a_{0} y_{1}\right)+\alpha_{2}\left(a_{n} y_{2}^{(n)}+a_{n-1} y_{2}^{(n-1)}+\cdots+a_{0} y_{2}\right) . \\
& =\alpha_{1} T\left(y_{1}\right)+\alpha_{2} T\left(y_{2}\right) .
\end{aligned}
$$

\therefore Hence, T is a linear transformation.

Show that $T^{-1}(f(x))=\{d(x)+m \mid m \in Z(T)\}$.
Take $m \in C^{n}\left[R^{-}\right]$such that $T(m)=0_{c^{\prime \prime}[R]}$.
That's $m \in Z(T)$
Then $T\left(d(x)+u_{1}\right)=T(d(x))+T(m) \quad$ since T is a L.T

$$
=f(x)+O_{c^{n}[R]} \quad \operatorname{since} T(d(x))=f(x) \text { (given). }
$$

$$
=f(x)
$$

$$
\begin{aligned}
& \Rightarrow T(d(x)+m)=f(x) \\
& \therefore T^{-1}(f(x))=d(x)+m .
\end{aligned}
$$

Therefore, $T^{-1}(f(x))=\{d(x)+m \mid m \in \mathbb{Z}(T)\}$.

Question (2).
(a)

$$
\begin{aligned}
D= & \left\{\left.\left[\begin{array}{cc}
a+2 b & 3 a+c \\
5 a+4 b+c & -2 a-4 b
\end{array}\right] \right\rvert\, a, b, c \in \mathbb{R}\right\} \\
& \mathbb{R}^{2 \times 2} \cong \mathbb{R}^{4}
\end{aligned}
$$

(as veter space)
Fake set correspond to $D=$

$$
\begin{aligned}
& D^{\prime}=\{(a+2 b, 3 a+c, 5 a+4 b+c,-2 a-4 b) \mid a, b, c \in \mathbb{R}\} \\
&=\{a(1,3,5,-2)+b(2,0,4,-4)+c(0,1,1,0) \mid a, b, c \in \mathbb{R}\} \\
&=\operatorname{span}\{(1,3,5,-2) \cdot(2,0,4,-4):(0,1,1,0)\} \\
&=\operatorname{span}\{(2,0,4,-4),(0,1,1,0)\} \\
& \operatorname{IN}\left(D^{\prime}\right)=2
\end{aligned}
$$

$$
D=\operatorname{span}\left\{\left[\begin{array}{cc}
2 & 0 \\
4 & -4
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right\}
$$

$$
\operatorname{IN}(D)=2
$$

\therefore Therefore, D is a subspace of $\mathbb{R}^{2 \times 2}$.

$$
\left[\begin{array}{cccc}
1 & 3 & 5 & -2 \\
2 & 0 & 4 & -4 \\
0 & 1 & 1 & 0
\end{array}\right] \xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{cccc}
1 & 3 & 5 & -2 \\
0 & -6 & -6 & 0 \\
0 & 1 & 1 & 0
\end{array}\right] \xrightarrow{\frac{1}{6} R_{2}+R_{6}}\left[\begin{array}{cccc}
(1) & 3 & 5 & -2 \\
0 & 66 & -6 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$\therefore 2$ learners

$$
\therefore I N=2
$$

(b)

$$
\begin{aligned}
& D=\left\{(a+3 b) x^{3}+(-2 a+b) x^{2}+(-a+4 b) x+(2 a-b) \mid a, b \in \mathbb{R}\right\} \\
& P_{4} \cong \mathbb{R}^{4}
\end{aligned}
$$

(as vector space)
Fake set correspond to $D=$

$$
\begin{aligned}
& D^{\prime}=\{(a+3 b,-2 a+b,-a+4 b, 2 a-b) \mid a, b \in \mathbb{R}\} \\
&=\{a(1,-2,-1,2)+b(3,1,4,-1) \mid a, b \in \mathbb{R}\} \\
&=\operatorname{span}\{(1,-2,-1,2):(3,1,4,-1)\} \\
& I N\left(D^{\prime}\right)=2 .
\end{aligned}
$$

$$
\begin{aligned}
& D=\operatorname{span}\left\{\left(x^{3}-2 x^{2}-x+2\right),\left(3 x^{3}+x^{2}+4 x-1\right)\right\} \\
& \operatorname{IN}(D)=2
\end{aligned}
$$

\therefore Therefore, D is a subspace of P_{4}.

Question (3).

$$
\begin{aligned}
& T: P_{4} \rightarrow P_{3} \\
& T\left(a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}\right)=\left(a_{2}-a_{1}+a_{0}\right) x^{2}+\left(2 a_{2}+a_{0}\right) x+\left(-a_{2}+a_{1}+2 a_{0}\right)
\end{aligned}
$$

(i)

$$
\begin{aligned}
& T^{\prime}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3} \\
& T^{\prime}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=\left(-a_{2}+a_{1}+2 a_{0}, 2 a_{2}+a_{0}, a_{2}-a_{1}+a_{0}\right) \\
&=\left\{a_{0}(2,1,1)+a_{1}(1,0,-1)+a_{2}(-1,2,1)+a_{3}(0,0,0,0)\right\} \\
&=\operatorname{span}\{(2,1,1),(1,0,-1),(-1,2,1),(0,0,0)\} \\
&=\operatorname{span}\{(2,1,1),(1,0,-1),(-1,2,1)\}
\end{aligned}
$$

$$
M^{\prime}=\left[\begin{array}{cccc}
2 & 1 & -1 & 0 \\
1 & 0 & 2 & 0 \\
1 & -1 & 1 & 0
\end{array}\right]
$$

(ii)

$$
\begin{aligned}
& \left.Z\left(T^{\prime}\right)=M_{1}^{\prime}\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \xrightarrow{\left[\begin{array}{cccc|c}
2 & 1 & -1 & 0 & 0 \\
1 & 0 & 2 & 0 & 0 \\
1 & -1 & 1 & 0 & 0
\end{array}\right] \xrightarrow{\frac{1}{2} R_{1}}\left[\begin{array}{cccc}
1 & 1 & -1 & 0 \\
1 & 0 & 2 & 0 \\
1 & -1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right]} \begin{array}{l}
-\frac{1}{2} \\
0
\end{array}\right] \\
& {\left[\begin{array}{cccc|c}
1 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\
0 & -\frac{1}{2} & \frac{5}{2} & 0 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 & 0
\end{array}\right] \xrightarrow{-2 R_{2}}\left[\begin{array}{ccccc|c}
1 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 1 & -5 & 0 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 & 0
\end{array}\right] \xrightarrow{-R_{1}+R_{2}} \xrightarrow{\frac{3}{2} R_{2}+R_{3}}}
\end{aligned}
$$

$$
\left[\begin{array}{cccc|c}
1 & \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\
0 & 1 & -5 & 0 & 0 \\
0 & 0 & -6 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& -6 a_{2}=0 \rightarrow a_{2}=0 \\
& a_{1}-5 a_{2}=0 \rightarrow a_{1}=0 \\
& a_{0}+\frac{1}{2} a_{1}-\frac{1}{2} a_{2}=0 \rightarrow a_{0}=0
\end{aligned}
$$

a_{3} is a free variable

$$
\begin{aligned}
\text { Sol. set } & =\left\{\left(0,0,0, a_{3}\right) \mid a_{3} \in \mathbb{R}\right\} \\
& =\left\{a_{3}(0,0,0,1) \mid a_{3} \in \mathbb{R}\right\} \\
Z\left(T^{\prime}\right) & =\operatorname{span}\{(0,0,0,1)\}
\end{aligned}
$$

\therefore Sol. set of $T=\operatorname{span}\left\{x^{3}\right\}$.

$$
\therefore \quad Z(T)=\operatorname{span}\left\{x^{3}\right\}
$$

(iii)

$$
\begin{aligned}
\operatorname{Range}\left(T^{\prime}\right) & =\operatorname{Col}\left(M^{\prime}\right) \\
& =\operatorname{span}\{(1,1,2) \cdot(-1,0,1) \cdot(1,2,-1)\} \\
\operatorname{Range}(T) & =\operatorname{span}\left\{\left(x^{2}+x+2,-x^{2}+1, x^{2}+2 x-1\right)\right\}
\end{aligned}
$$

(iv) Does $(-7,3,1)$ belong to Range $\left(T^{\prime}\right)$?

$$
\begin{aligned}
& M^{\prime}\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
-7 \\
3 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
2 & 1 & -1 & 0 \\
1 & 0 & 2 & 0 \\
1 & -1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
-7 \\
3 \\
1
\end{array}\right] \\
& \text { Sol. set }=\left\{\left.\left(-2,-\frac{1}{2}, \frac{5}{2}, a_{3}\right) \right\rvert\, a_{3} \in \mathbb{R}\right\} \rightarrow \text { sol, set }=\left\{\left.\left(-2-\frac{1}{2} x+\frac{5}{2} x^{2}+a_{3} x^{3}\right) \right\rvert\, a_{3} \in \mathbb{R}\right\}
\end{aligned}
$$

since there exist $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ such that $(-7,3,1) \in \operatorname{Range}\left(T^{\prime}\right)$,
then there exist a polynomaial $a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ such that $-7+3 x+x^{2} \in \operatorname{Ronge}(T)$. \therefore Answertis YES.

Question (4).

$$
\left\{\begin{array}{l}
T: P_{3} \rightarrow \mathbb{R} \\
T\left(x^{2}\right)=1 \\
T(2 x)=4 \\
T(x+1)=-4
\end{array}\right.
$$

$$
\begin{aligned}
& \text { (a) } \left.\begin{array}{l}
T^{\prime}=\mathbb{R}^{3} \rightarrow \mathbb{R} \\
\left\{\begin{array}{l}
T^{\prime}(1,0,0)=1 \\
T^{\prime}(0,2,0)=4 \\
T^{\prime}(0,1,1)=-4
\end{array}\right. \\
T^{\prime}\left(e_{1}\right)=T^{\prime}(1,0,0)=1 \\
T^{\prime}\left(e_{2}\right)=T^{\prime}(0,1,0)=T^{\prime}\left(\frac{1}{2}(0,2,0)\right)=\frac{1}{2} T^{\prime}(0,2,0)=\frac{1}{2}(4)=2 . \\
T^{\prime}\left(e_{3}\right)=T^{\prime}(0,0,1)=T^{\prime}\left(-\frac{1}{2}(0,2,0)+(0,1,1)\right)=-\frac{1}{2} T^{\prime}(0,2,0)+T^{\prime}(0,1,1)+(-4)=-2-4=-6 . \\
\therefore M^{\prime}=\left[\begin{array}{cc}
\left(e_{1}\right) \\
1 & T\left(e_{1}\right) \\
\hline T^{\prime}((,)) \\
\hline
\end{array}\right]
\end{array} . \begin{array}{l}
-6]
\end{array}\right]
\end{aligned}
$$

(b)

$$
\begin{aligned}
& Z\left(T^{-}\right) \rightarrow\left[\begin{array}{lll}
1 & 2 & -6
\end{array}\right]\left[\begin{array}{l}
a_{2} \\
a_{1} \\
0_{0}
\end{array}\right]=\left[\begin{array}{l}
0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{lll|l}
1 & 2 & -6 & 0
\end{array}\right] \\
& \rightarrow a_{2}+2 a_{1}-6 a_{0}=0 \\
& \rightarrow \quad a_{2}=-2 a_{1}+6 a_{0}, a_{1} \& a_{2} \text { are fire variables. }
\end{aligned}
$$

$$
\text { Sol, set } \begin{aligned}
Z(T) & =\left\{\left(-2 a_{1}+6 a_{0}, a_{1}, a\right) \mid a_{1}, a_{0} \in \mathbb{R}\right\} \\
& =\left\{a_{1}(-2,1,0)+a_{0}(6,0,1) \mid a_{1}, a_{0} \in \mathbb{R}\right\} \\
& =\operatorname{span}\{(-2,1,0) \cdot(6,0,1)\} \\
Z(T) & =\operatorname{span}\left\{\left(-2 x^{2}+x\right) \cdot\left(6 x^{2}+1\right)\right\}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& H=\left\{a \in P_{3} \mid T(a)=\pi\right\} \\
& T(a)=\pi \rightarrow T\left(\widetilde{\left.a_{2} x^{2}+a_{1} x+a_{0}\right)}\right)=\pi \\
& \rightarrow T^{\prime}\left(a_{2}, a_{1}, a_{0}\right)=\pi \\
& \rightarrow M^{\prime}\left[\begin{array}{l}
a_{2} \\
a_{1} \\
a_{0}
\end{array}\right]=\pi \\
& \rightarrow\left[\begin{array}{lll}
1 & 2 & -6
\end{array}\right]\left[\begin{array}{l}
a_{2} \\
a_{1} \\
a_{0}
\end{array}\right]=\pi \\
& \rightarrow a_{2}+2 a_{1}-6 a_{0}=\pi \\
& \rightarrow \text { sol, set }(T)=\left\{\left(\pi-2 a_{1}+6 a_{0}, a_{1}, a_{0}\right) \mid a_{1}, a_{0} \in \mathbb{R}\right\} \\
& \text { Sol, set }(T)=\left\{\left(\left(\pi-2 a_{1}+6 a_{0}\right) x^{2}+a_{1} x+a_{0}\right) \mid a_{1}, a_{0} \in \mathbb{R}\right\} \\
& \therefore H=\left\{\left(\pi-2 a_{0}+6 a_{0}\right) x^{2}+a_{1} x+a_{0} \mid a_{1}, a_{0} \in \mathbb{R}\right\}
\end{aligned}
$$

note that $T\left(x^{2}\right)=1$. Hence $T\left(\pi x^{2}\right)=\pi$.

By Question $1(c i): T^{-1}(\pi)=\left\{\pi x^{2}+m \mid m \in z(T)\right\}$

${ }_{28} \mathrm{HW}$ IV

Assignment, IV, MTH 512 , Fall 2019

Ayman Badawi

QUESTION 1. Form a basis for $\operatorname{Hom}\left(P_{2}, R^{2 \times 2}\right)$.
QUESTION 2. Let V be a vector space such that $I N(V)=8$. Given W, K are subspaces of V such that $I N(W)=5$ and $I N(K)=4$. Find all possibilities of $I N(W \cap K)$. (Note that $\operatorname{IN}()=\operatorname{dim}())$

QUESTION 3. Let $T: P^{4} \rightarrow R^{3}$ be a linear transformation such that $T(f(x))=\left(\int_{0}^{1} f(x) d x, f^{\prime}(0), 0\right)$
(0.5a) Find the fake standard matrix presentation of T.
(a) Find Range(T) [Hint: one way is to find the fake T^{\prime}]
(b) Find $\mathrm{Z}(\mathrm{T})$ [Hint: again, you may make use of $\left.T^{\prime}\right]$

QUESTION 4. Let $T: R^{4} \rightarrow R^{4}$ such that $T\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\left(2 a_{1}+a_{3}, 0, a_{1}, a_{1}\right)$ and $F: R^{4} \rightarrow R^{4}$ such that $F\left(b_{1}, b_{2}, b_{3}, b_{4}\right)=\left(b_{1}+b_{2},-3 b_{1}-3 b_{2}, b_{3}, 4 b_{3}\right)$. Then we know that $T+F: R^{4} \rightarrow R^{4}$ is a linear transformation.
(0.5 a) Find the standard matrix presentation of $T+F$
(a) Find Range $(T+F)$
(b) Find $Z(T+F)$
(1.5b) Find the standard matrix presentation of T^{2}
(c) Find Range (T^{2})

QUESTION 5. (a) A matrix $A, n \times n$, is called an idempotent matrix if $A^{2}=A$. Assume that A is a nontrivial idempotent matrix (note that the zero-matrix $n \times n$ and I_{n} are called trivial idempotents). Convince me that the homogeneous system $A X=0$ has infinitely many solutions.
(0.3a) Let A be an idempotent matrix, $n \times n$. Convince me that $I-A$ is an idempotent matrix.
(b) A matrix $A, n \times n$, is called a nilpotent matrix if $A^{m}=0-M a t r i x$, for some positive integer m. Convince me that $A+I_{n}$ is an invertible matrix.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

${ }_{29}$ Solution to HW IV

Name: Sarah Hjeeb
ID: 900077394
Assignment IV

* Question 1: Form a basis for $\operatorname{Hom}\left(P_{2}, \mathbb{R}^{2 \times 2}\right)$
$T_{1}^{\prime}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{4}$ where:

$$
\begin{aligned}
& T_{1}^{\prime}: R^{2} \longrightarrow \mathbb{R}^{4} \text { where: } \\
& T_{1}^{\prime}\left(a_{1}, a_{2}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{1} \\
0 \\
0 \\
0
\end{array}\right] \sim T_{1}\left(a_{1}+a_{2} x\right)=\left(\begin{array}{ll}
a_{1} & 0 \\
0 & 0
\end{array}\right) \\
& T_{2}^{\prime}\left(a_{1}, a_{2}\right)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{2} \\
0 \\
0 \\
0
\end{array}\right] \sim T_{2}\left(a_{1}+a_{2} x\right)=\left(\begin{array}{ll}
a_{2} & 0 \\
0 & 0
\end{array}\right) \\
& 0 T_{3}^{\prime}\left(a_{1}, a_{2}\right)=\left[\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
a_{1} \\
0 \\
0
\end{array}\right] \sim T_{3}\left(a_{1}+a_{2} x\right)=\left(\begin{array}{ll}
0 & a_{1} \\
0 & 0
\end{array}\right) \\
& \cdot T_{4}^{\prime}\left(a_{1}, a_{2}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
a_{2} \\
0 \\
0
\end{array}\right] \sim T_{4}\left(a_{1}+a_{2} x\right)=\left(\begin{array}{ll}
0 & a_{2} \\
0 & 0
\end{array}\right) \\
& 0 \\
& T_{5}^{\prime}\left(a_{1}, a_{2}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
a_{1} \\
0
\end{array}\right] \sim T_{5}\left(a_{1}+a_{2} x\right)=\left(\begin{array}{ll}
0 & 0 \\
a_{1} & 0
\end{array}\right) \\
& X
\end{aligned}
$$

$$
\begin{aligned}
& T_{6}^{\prime}\left(-a_{1}, a_{2}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
a_{2} \\
0
\end{array}\right] \sim T_{6}\left(a_{1}+a_{2} x\right)=\left(\begin{array}{ll}
0 & 0 \\
a_{2} & 0
\end{array}\right) \\
& \cdot T_{7}^{\prime}\left(a_{1}, a_{2}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
a_{1}
\end{array}\right] \sim T_{7}\left(a_{1}+a_{2} x\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & a_{1}
\end{array}\right) \\
& \text { - } T_{8}^{\prime}\left(a_{1}, a_{2}\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
a_{2}
\end{array}\right] \sim T_{8}\left(a_{1}+a_{2} x\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & a_{2}
\end{array}\right) \\
& \text { So the basis of } \operatorname{Hom}\left(P_{2}, \mathbb{R}^{2 \times 2}\right)=\operatorname{span}\left\{T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{7}, T_{8}\right\}
\end{aligned}
$$

* Question 2:

Let V be a vector space sit $I N(V)=8$
Let W and K be subspaces of V sit $I N(W)=5$ and $I N(K)=4$
we proved in class that $W+K$ is a subspace of V
then $I N(W+K) \leqslant I N(V)$

$$
\begin{gathered}
\Rightarrow \operatorname{IN}(W)+\operatorname{IN}(k)-\operatorname{IN}(W \cap K) \leqslant \operatorname{IN}(V) \\
\\
9-\operatorname{IN}(W \cap K) \leqslant 8 \\
\\
\operatorname{IN}(w \cap k) \geqslant 1
\end{gathered}
$$

and $\operatorname{IN}(W \cap K)$ canst be greater than (o) $\operatorname{IN}(W)$ and $\operatorname{IN}(K)$ thus IN $(w \cap K) \leqslant 4$
so $\quad 1 \leqslant \operatorname{IN}(\omega \cap k) \leqslant 4$
therefore $I N(W \cap K)=1$ or 2 or 3 or 4

* Question 3: Let 1: $r^{\text {. }} \rightarrow \mathbb{I k}$ be a L.

$$
\begin{aligned}
& \text { Let } 1: r^{\prime} \rightarrow \mathbb{1 k} \text { be a L.1 } \\
& \text { s.t } T(f(x))=\left(\int_{0}^{1} f(x) d x, f^{\prime}(0), 0\right)
\end{aligned}
$$

$$
\text { So } T\left(a_{1}+a_{2} x+a_{3} x^{2}+a_{4} x^{3}\right)=\left(a_{6}+\frac{1}{2} a_{2}+\frac{1}{3} a_{3}+\frac{1}{4} a_{4}, a_{2}, 0\right)
$$

a) first find the fake L.T $T^{\prime}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ s.t:

$$
T^{\prime}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\left(a_{1}+\frac{1}{2} a_{2}+\frac{1}{3} a_{3}+\frac{1}{4} a_{4}, a_{2}, 0\right)
$$

so the standard matrix presentation is:

$$
M=\left[\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
1 & 1 / 2 & 1 / 3 & 1 / 4 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

b)

$$
\left.\begin{array}{rl}
\operatorname{Range}\left(T^{\prime}\right) & =\left\{\left.\left(a_{1}+\frac{1}{2} a_{2}+\frac{1}{3} a_{3}+\frac{1}{4} a_{4}, a_{2}, 0\right) \right\rvert\, a_{1}, a_{2}, a_{3}, a_{4} \in \mathbb{R}\right\} \\
& =\left\{\left.a_{1}(1,0,0)+a_{2}\left(\frac{1}{2}, 1,0\right)+a_{3}\left(\frac{1}{3}, 0,0\right)+a_{4}\left(\frac{1}{4}, 0,0\right) \right\rvert\, a_{1}, a_{2}, a_{3}\right\} \\
\left.a_{4} \in \mathbb{R}\right\}
\end{array}\right]=\left\{\begin{array}{rrcr}
X & \left.(1,0,0),\left(\frac{1}{2}, 1,0\right)\right\}
\end{array}\right.
$$

$$
\text { and } \operatorname{Range}(T)=\operatorname{span}\left\{(1,0,0),\left(\frac{1}{2}, 1,0\right)\right\}
$$

c) To find $Z(T)$, first we will solve the system $M\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3} \\ a_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$

$$
\begin{aligned}
\Rightarrow & {\left[\begin{array}{cccc:c}
1 & 1 / 2 & 1 / 3 & \frac{1}{4} & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \Rightarrow\left\{\begin{array}{l}
a_{2}=0 \\
a_{1}=-\frac{1}{3} a_{3}-\frac{1}{4} a_{4} \\
\text { so } Z\left(T^{\prime}\right)
\end{array}=\left\{\left.\left(-\frac{1}{3} a_{3}-\frac{1}{4} a_{4}, 0, a_{3}, a_{4}\right) \right\rvert\, \quad a_{3}, a_{4} \in \mathbb{R}\right\}\right.} \\
& =\operatorname{span}\left\{\left(-\frac{1}{3}, 0,1,0\right),\left(-\frac{1}{4}, 0,0,1\right)\right\}
\end{aligned}
$$

thus $Z(T)=\operatorname{sinan}\left\{\left(-\frac{1}{3}+x^{2}\right),\left(-\frac{1}{4}+x^{3}\right)\right\}$

* Question 4: $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ sit $T\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\left(2 a_{1}+a_{3}, 0, a_{1}, a_{1}\right)$ and $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ sit $F\left(b_{1}, b_{2}, b_{3}, b_{4}\right)=\left(b_{1}+b_{2},-3 b_{1}-3 b_{2}, b_{3}, 4 b_{3}\right)$
a) $T+F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is a L.T s.t:

$$
\begin{aligned}
& T+F)\left(c_{1}, c_{2}, c_{3}, c_{4}\right)=T\left(c_{1}, c_{2}, c_{3}, c_{4}\right)+F\left(c_{1}, c_{2}, c_{3}, c_{4}\right) \\
& =\left(2 c_{1}+c_{3}, 0, c_{1}, c_{1}\right)+\left(c_{1}+c_{2},-3 c_{1}-3 c_{2}, c_{3}, 4 c_{3}\right) \\
& =\left(3 c_{1}+c_{2}+c_{3},-3 c_{1}-3 c_{2}, c_{1}+c_{3}, c_{1}+4 c_{3}\right)
\end{aligned}
$$

thus $\begin{aligned} & M_{T+F} \\ & \frac{\lambda}{4}=M_{T}+M_{F}\end{aligned}=\left(\begin{array}{cccc}3 & 1 & 1 & 0 \\ -3 & -3 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 4 & 0\end{array}\right)$
b) Range $\left(T_{+} F\right)=\operatorname{span}\{(3,-3,1,1),(1,-3,0,0),(1,0,1,4)\}$
c) To find $Z\left(T_{F F}\right)$ we must solve the system $M_{T+F}\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$

$$
\text { thus }\left(\begin{array}{cccc:c}
3 & 1 & 1 & 0 & 0 \\
-3 & -3 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 4 & 0 & 0
\end{array}\right) \xrightarrow[-R_{3}+R_{4} \rightarrow R_{4}]{R_{+} R_{2} \rightarrow R_{2}}\left(\begin{array}{cccc:c}
3 & 1 & 1 & 0 & 0 \\
0 & -2 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 3 & 0 & 0
\end{array}\right)
$$

Thus $C_{3}=C_{2}=C_{1}=0$

So

$$
\begin{aligned}
Z(T+F) & =\left\{\left(0,0,0, c_{4}\right) \mid c_{4} \in \mathbb{R}\right\} \\
& =\left\{c_{4}(0,0,0,1) \mid c_{4} \in \mathbb{R}\right\} \\
& =\operatorname{span}\{(0,0,0,1)\}
\end{aligned}
$$

d) we know that $M_{T^{2}}=\left(M_{T}\right)^{2}=M_{T} \cdot M_{T}$
thus $M_{T^{2}}=\left(\begin{array}{llll}2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)\left(\begin{array}{llll}2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$

$$
A=\left(\begin{array}{llll}
5 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 \\
2 & 0 & 1 & 0
\end{array}\right)
$$

e) $\operatorname{Range}\left(T^{2}\right)=\operatorname{span}\{(5,0,2,2),(2,0,1,1)\}$.

* Question 5 :
a) $\operatorname{det} A$ be an idempotent matrix i.e $A^{2}=A$.
case 1.) $|A| \neq 0$
$\Leftrightarrow A$ is invertible

$$
\begin{aligned}
& \Leftrightarrow A \text { is invertible } \\
& \Leftrightarrow A^{-1} \text { s.t } \quad A^{2}=A \Rightarrow A^{-1} A A=A^{-1} A \\
& \Rightarrow A=I_{n} .
\end{aligned}
$$

case 2) suppose $A \neq I_{n}$ then $|A|=0$ why , why I_{n} is the
$\Rightarrow A$ is non-invertible

$$
\begin{aligned}
& \Rightarrow A \text { is non-invertible } \\
& \Rightarrow \exists X \in \mathbb{R}^{n} \text { sit } A X=0 \text { and } X \neq 0
\end{aligned}
$$

$X) \Rightarrow$ the system has in finitely many solutions since every scalar multiplication of X is a solution to the system
b)

$$
\begin{aligned}
\left(I_{n}-A\right)^{2} & =I_{n}^{2}-2 I_{n} A+A^{2} \\
& =I_{n}-2 A+A \\
X / X & =I_{n}-A
\end{aligned}
$$

therefore $\left(I_{n}-A\right)$ is idempotent matrix.
c) Let $A, n \times n$, be a nilpotent murex ie $\cdots=0$
suppose that $\left|A+I_{n}\right|=0$
then $\left(A_{+} I n\right) V=0$ for some $V \neq 0 \in \mathbb{R}^{n}$

$$
\begin{aligned}
& \Rightarrow A V=(-1) V \\
& \Rightarrow A^{m} V=(-1)^{m} V \\
& \Rightarrow A^{m}=(-1)^{m} I_{n} \text { which contradicts } A^{m}=0
\end{aligned}
$$

therefore $\left|A+I_{n}\right| \neq 0$
which implies that $A_{+} I_{n}$ is invertible.

${ }_{2.10} \mathrm{HW}$ V

Assignment, V, MTH 512, Fall 2019

Ayman Badawi

QUESTION 1. Let $T: V \rightarrow V$ be a linear transformation. Given $B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ is a basis for V such that $T\left(b_{1}\right)=b_{2}, T\left(b_{2}\right)=b_{3}, T\left(b_{3}\right)=b_{4}, T\left(b_{4}\right)=-b_{1}+2 b_{3}$.
(i) Find M_{B}.
(ii) Convince me that $T^{-1}: V \rightarrow V$ exists. Then find $T^{-1}\left(b_{1}\right), T^{-1}\left(b_{2}\right), T^{-1}\left(b_{3}\right), T^{-1}\left(b_{4}\right)$. [Note that T^{-1} exists iff T is one-to-one and ONTO iff $\left|M_{B}\right| \neq 0$]
(iii) Find all eigenvalues of T. For each eigenvalue a of T, find $E_{a}(T)=\{v \in V \mid T(v)=a v\}$, and write it as span.
(iv) Find all eigenvalues of T^{-1}. For each eigenvalue w of T^{-1}, find $E_{w}\left(T^{-1}\right)$ and write it as span.
(v) Find $C_{T}(\alpha)$ and $m_{T}($ alpha $)$.
(vi) Convince me that T is not diagnolizable.
(vii) Find $C_{T}^{-1}(\alpha)$ and $m_{T^{-1}}(\alpha)$.
(viii) Define $F: V \rightarrow V$ such that $F(v)=-T^{4}(v)+2 T^{2}(v)$ for every $v \in V$. Then F is a linear transformation (DO NOT SHOW THAT). With minimum calculation, convince me that $F(v)=v$ for every $v \in V$, i.e., F is the identity map on V.
(ix) Let $F: V \rightarrow V$ such that $F(v)=T+I$ for every $v \in V$. Then F is a linear transformation (DO NOT SHOW THAT). With minimum calculation, convince me that F^{-1} does not exist.

QUESTION 2. Let T be a linear transformation from V into V such that $I N(V)=5$ (note that $\operatorname{IN}(\mathrm{V})=\operatorname{dim}(\mathrm{V})$). Convince me that there exists a real number α and a nonzero element $v \in V$ such that $T(v)=\alpha v$.

QUESTION 3. Give me an example of a matrix $A, 3 \times 3$, such that $C_{A}(\alpha)=m_{A}(\alpha)$ and A is not diagnolizable.
QUESTION 4. Give me an example of a matrix $A, 3 \times 3$, such that $C_{A}(\alpha)=m_{A}(\alpha)$ and A is diagnolizable.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

${ }_{2}^{2.11}$ Solution to HW V

Name: Fatah Ajeeb

$$
\text { ID: } 900077394
$$

Assignment V

* Question 1: Let $T . V \rightarrow V$ be a $L . T$
$B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}$ is a basis of V such that:

$$
\begin{aligned}
& B=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\} \text { is a basis } b_{1}\left(b_{3}\right)=b_{4}, T\left(b_{4}\right)=-2 b_{3} \\
& T\left(b_{1}\right)=b_{2}, T\left(b_{2}\right)=b_{3}, T\left(b_{1}\right)
\end{aligned}
$$

i) $M_{B}: \quad M_{B}=\left[\begin{array}{cccc}T(b) & T\left(b_{0}\right) & 0 & -1\left(b b^{2}\right) \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0\end{array}\right]^{T(b)}$
ii) First let us compute $\left|M_{B}\right|$:

$$
\left|M_{B}\right|=\left|\begin{array}{cccc}
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0
\end{array}\right|=1 \neq 0
$$

thus T is invertible $\Rightarrow T^{-1}$ exists.
and, $T^{-1}\left(b_{2}\right)=b_{1}$

$$
\begin{aligned}
& T^{-1}\left(b_{3}\right)=b_{2} \\
& T^{-1}\left(b_{4}\right)=b_{3} \\
& \cdot b_{4}=T^{-1}\left(-b_{1}+2 b_{3}\right) \Rightarrow b_{4}=-T^{-1}\left(b_{1}\right)+2 T^{-1}\left(b_{3}\right) \\
&
\end{aligned}
$$

iii) Find eigenvalues of T :

First we will get the eigenvalues of M_{B}.

$$
\begin{aligned}
C_{M_{B}}(a) & =a^{4}-2 a^{2}+1 \\
& =\left(a^{2}-1\right)^{2} \\
& =(a-1)^{2}(a+1)^{2}
\end{aligned}
$$

thus eigen values of M_{B} are 1 and -1
hence eigen values of T are 1 and -1

- Now Let us find the eigen spaces corres ponding to the eigenvalues.

$$
\text { Thus } x_{1}=-x_{4}, x_{2}=-x_{4}, x_{3}=x_{4}
$$

$$
\text { and } E_{1}\left(M_{8}\right)=\left\{\left(-X_{4},-X_{4}, X_{4}, X_{4}\right) \mid X_{4} \in \mathbb{R}\right\}
$$

$$
=\operatorname{span}\{(-1,-1,1,1)\}
$$

Hence $E_{1}(T)=\operatorname{span}\left\{\left(-b_{1}-b_{2}+b_{3}+b_{4}\right)\right\}$

$$
\begin{aligned}
& \text { * } E_{1}\left(M_{B}\right):\left(I_{4}-M_{B}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& \Rightarrow\left[\begin{array}{cccc|c}
1 & 0 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & -2 & 0 \\
0 & 0 & -1 & 1 & 0
\end{array}\right] \xrightarrow{R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cccc|c}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & -1 & 1 & -2 & 0 \\
0 & 0 & -1 & 1 & 0
\end{array}\right] \\
& {\left[\begin{array}{cccc|c}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad R_{3+} R_{4 \rightarrow} R_{4}\left[\begin{array}{cccc|c}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & -1 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& * E_{-1}\left(M_{B}\right): \quad\left(-I_{4}-M_{B}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& {\left[\begin{array}{cccc|c}
-1 & 0 & 0 & 1 & 0 \\
-1 & -1 & 0 & 0 & 0 \\
0 & -1 & -1 & -2 & 0 \\
0 & 0 & -1 & -1 & 0
\end{array}\right] \stackrel{-R_{1}+R_{2}-R_{2}}{\longrightarrow}\left[\begin{array}{cccc:c}
-1 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & -1 & 0 \\
0 & -1 & -1 & -2 & 0 \\
0 & 0 & -1 & -1 & 0
\end{array}\right]} \\
& \downarrow-R_{2}+R_{3} \rightarrow R_{3} \\
& {\left[\begin{array}{cccc|c}
-1 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & -1 & 0 \\
0 & 0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \quad<-R_{3+} R_{4} \rightarrow R_{4}\left[\begin{array}{cccc|c}
1 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & -1 & 0 \\
0 & 0 & -1 & -1 & 0 \\
0 & 0 & -1 & -1 & 0
\end{array}\right]}
\end{aligned}
$$

thus $x_{1}=x_{4}, x_{2}=-x_{4}, x_{3}=-x_{4}$
So $E_{-1}\left(M_{B}\right)=\left\{\left(x_{4},-x_{4},-x_{4}, x_{4}\right) \mid x_{4} \in \mathbb{R}\right\}$

$$
=\operatorname{span}\{(1,-1,-1,1)\}
$$

hence $E_{-1}(T)=\operatorname{span}\left\{\left(b_{1}-b_{2}-b_{3}+b_{4}\right)\right\}$.
iv) It is obvious that M_{B}^{-1} is the matrix presentation of T^{-1} with respect to the basis B.
Recall that if λ is an eigen value of M_{B} then $\frac{1}{\lambda}$ is an eigenvalue of $M_{B}^{-1} \quad(\lambda \neq 0)$
Moreover: $\quad E_{\lambda}\left(M_{B}\right)=E_{\frac{1}{\lambda}}\left(M_{B}^{-1}\right)$
thus eigenvalues of T^{-1} are 1 and -1
and $E_{1}\left(T^{-1}\right)=E_{1}(T)=\operatorname{sinan}\left\{-b_{1}-b_{2}+b_{3}+b_{4}\right\}$

$$
E_{-1}\left(T^{-1}\right)=E_{-1}(T)=\operatorname{sinan}\left\{b_{1}-b_{2}-b_{3}+b_{4}\right\}
$$

v). We know that $C_{T}(\alpha)=C_{M_{B}}(\alpha)$ thus $C_{T}(\alpha)=(\alpha-1)^{2}(\alpha+1)^{2}$

- we can notice that M_{B} is a companion matrix thus $m_{M_{B}}(\alpha)=C_{M_{B}}(\alpha)=(\alpha-1)^{2}(\alpha+1)^{2}$ and $m_{T}(\alpha)=m_{M_{B}}(\alpha)=(\alpha-1)^{2}(\alpha+1)^{2}$
vi) Since $m_{T}(\alpha)=(\alpha-1)^{2}(\alpha+1)^{2} \neq(\alpha-1)(\alpha+1)$ we can conclude that T is not diagonalizable.
vii) $M_{B}^{-1}=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0\end{array}\right)$
thus $C_{M_{B}^{-1}}(\alpha)=\left|\alpha I_{4}-M_{B}^{-1}\right|=\left|\begin{array}{cccc}\alpha & -1 & 0 & 0 \\ -2 & \alpha & -1 & 0 \\ 0 & 0 & \alpha & -1 \\ 1 & 0 & 0 & \alpha\end{array}\right|$

$$
\begin{aligned}
& =\alpha\left|\begin{array}{ccc}
\alpha & -1 & 0 \\
0 & \alpha & -1 \\
0 & 0 & \alpha
\end{array}\right|+1\left|\begin{array}{ccc}
-2 & -1 & 0 \\
0 & \alpha & -1 \\
1 & 0 & \alpha
\end{array}\right| \\
& =\alpha\left[\alpha\left(\alpha^{2}\right)\right]+1\left[-2\left(\alpha^{2}\right)+1(1)\right] \\
& =\alpha^{4}-2 \alpha^{2}+1
\end{aligned}
$$

thus $C_{T-1}(\alpha)=C_{T}(\alpha)=\alpha^{4}-2 \alpha^{2}+1=(\alpha-1)^{2}(\alpha+1)^{2}$

- we know that T^{-1} is not diagonalizable since T is not diagonalizable thus $m_{T-1}(\alpha) \neq(\alpha-1)(\alpha+1)$
but the matrix presentation of T^{-1} with respect to some basis is not a companion matrix.
thus $m_{T^{-1}}(\alpha)=C_{T^{-1}}(\alpha)$ of $(\alpha-1)^{2}(\alpha+1)$ of $(\alpha-1)^{2}$ of $(\alpha+1)$ of $(\alpha-1)$ or $(\alpha+1)^{2}$
viii) Let $F: V \rightarrow V$ sit $F(v)=-T^{4}(v)+2 T^{2}(v) \quad \forall v \in V$ we know that $\left.C_{T}(\alpha)\right|_{\alpha=T}=0$. function
thus $T^{4}-2 T^{2}+I=0$ where I is the identity map on V

$$
\begin{aligned}
& \Leftrightarrow-T^{4}+2 T^{2}-I=0 \\
& \Rightarrow \underbrace{-T^{4}(v)+2 T^{2}(v)}_{F(v)-v=0}-I(v)=0 \\
& \Rightarrow r^{-I}=0
\end{aligned}
$$

$\Rightarrow F(v)=v \quad$ for every $v \in V$
(ix) Recall that -1 is an eigenvalue of T then $T(v)=-v$

$$
\begin{array}{ll}
\Rightarrow & T=-I \\
\Rightarrow & T+I=0 \\
\Rightarrow & F=0 . \text { function }
\end{array}
$$

$$
\text { where } I \text { is the identity map on } v
$$

and It is obvious that F is not invertible thus F^{-1} is does nit exist.

* Question 2:

Let $T: V \rightarrow V$ such that $I N(V)=5$

- we know that the degree of the characteristic polynomial is equal to the dimesion of V. thus $C_{T}(\alpha)$ has a degree 5.
So $C_{T}(\alpha)$ has is a polynomial of odd degree and we know that every polynomial of odd degree has must have at least one real root.
Thus T must have at least one real eigenvalue say α. and a corresponding eigen function $v^{\in V}, V \neq 0$, such that $T(V)=\alpha V$
* Question 3 :
$\operatorname{Let} A=\left(\begin{array}{ccc}0 & 0 & -2 \\ 1 & 0 & 3 \\ 0 & 1 & 0\end{array}\right)$
since A is a companion matrix
then $C_{A}(\alpha)=m_{A}(\alpha)=\alpha^{3}-3 \alpha+2$

$$
=(\alpha-1)^{2}(\alpha+2)
$$

and since $m_{n}(\alpha) \neq(\alpha-1)(\alpha+2)$ thus A is not diagonalizable
therefore A is 3×3 matrix, such that $C_{A}(\alpha)=m_{A}(\alpha)$ and A is not diagonalizable

* Question 4 :

$$
\operatorname{det} A=\left(\begin{array}{rrr}
0 & 0 & 6 \\
1 & 0 & -11 \\
0 & 1 & 6
\end{array}\right)
$$

since A is a companion matrix we have:

$$
\begin{aligned}
C_{A}(\alpha)=m_{A}(\alpha) & =\alpha^{3}-6 \alpha^{2}+11 \alpha-6 \\
& =(\alpha-1)(\alpha-2)(\alpha-3)
\end{aligned}
$$

and A is diagonalizable
thus A is a 3×3 matrix, such that $C_{A}(\alpha)=m_{A}(\alpha)$ and A is diagonalizable.

${ }_{212}$ HW VI

Assignment VI, MTH 512 , Fall 2019

Ayman Badawi

QUESTION 1. Let $T: R^{3} \rightarrow R^{3}$ such that $T(a, b, c)=(a+b, 3 c+2 a, 6 c+4 a)$ Find a formula for T^{*}.
QUESTION 2. Let $M=\operatorname{span}\left\{1, x^{2}\right\}$. Then M is a subspace of P_{4}. Define $<,>$ on P_{4} such that $<f_{1}, f_{2}>=$ $\int_{0}^{1} f_{1} f_{2} d x$. Find M^{\perp}. Note that M^{\perp} is a subspace of P_{4}

QUESTION 3. Define $<>$ on R^{2} such that $<\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)>=a_{1} a_{2}+0.5\left(a_{1} b_{2}+a_{2} b_{1}\right)+\frac{1}{3} b_{1} b_{2}$. Convince me that $<>$ is an inner product on R^{2}. [Hint: One way is to verify the 3 axioms...boring calculations or stare a little: Observe that P^{2} is R^{2} as vector spaces (a, b) is $\mathrm{a}+\mathrm{bx}$ in P_{2}, also $<f_{1}, f_{2}>=\int_{0}^{1} f_{1} f_{2} d x$ is an inner product on P_{2}. Now translate this inner product to R^{2}. Done]

QUESTION 4. Let $a_{1}, a_{2}, \ldots, a_{5}, b_{1}, b_{2}, \ldots, b_{5}$ be some real numbers. Convince me that $\left(a_{1} b_{1}+a_{2} b_{2}+\ldots, a_{5} b_{5}\right)^{2} \leq$ $\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{5}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+\ldots+b_{5}^{2}\right)$
QUESTION 5. Let V be an inner product space. Convince me that $\|v+w\| \leq\|v\|+\|w\|$ for every $v, w \in V$
QUESTION 6. Let $D=\operatorname{Span}\left\{1, x^{3}, x^{4}\right\}$. Find an orthonormal basis of D, where
$<f_{1}, f_{2}>=\int_{0}^{1} f_{1} f_{2} d x$. [Note you will use the same idea as we did in dot product earlier, but here use $<$, $>$, so $w_{1}=1, w_{2}=v_{2}-\frac{\left\langle v_{2}, w_{1}\right\rangle}{\left\|w_{1}\right\|^{2}} w_{1}\left(v_{2}\right.$ here is $\left.x^{3}\right)$ and so on... same algorithm as in the case of dot product. Then make them Orthonormal.
QUESTION 7. Given $\left[\begin{array}{cc}a & -3 \\ b & c\end{array}\right]$ is positive definite. Find all possible values of a, b, c.
QUESTION 8. Given $1-2 x, v_{2}, v_{3}, v_{4}$ is an orthogonal basis of P_{4}, where $\left\langle f_{1}, f_{2}\right\rangle=\int_{0}^{1} f_{1} f_{2} d x$. Then $4 x^{3}=$ $c_{1}(1-2 x)+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}$. Find the value of c_{1}.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

2.13 Solution to HW VI

MTH 512-HW6
Fotimah Abdullah

$$
-g 00085282-
$$

Question(1).
Find M_{T} :

$$
\begin{aligned}
& T\left(e_{1}\right)=T(1,0,0)=(1,2,4) \\
& T\left(e_{2}\right)=T(0,1,0)=(1,0,0) \\
& T\left(e_{3}\right)=T(0,0,1)=(0,3,6) \\
& \Rightarrow M_{T}=\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 0 & 3 \\
4 & 0 & 6
\end{array}\right]
\end{aligned}
$$

Define $T^{*}=\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.

$$
\begin{aligned}
& M_{T^{*}}=\left(M_{T}\right)^{\top}=\left[\begin{array}{lll}
1 & 2 & 4 \\
1 & 0 & 0 \\
0 & 3 & 6
\end{array}\right] \\
& T^{*}(V)=M_{T^{*}} V
\end{aligned}
$$

Hence, $T^{*}(a, b, c)=\left[\begin{array}{lll}1 & 2 & 4 \\ 1 & 0 & 0 \\ 0 & 3 & 6\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$

$$
\begin{gathered}
=\left[\begin{array}{c}
a+2 b+4 c \\
a \\
3 b+6 c
\end{array}\right] \\
\therefore T^{*}(a, b, c)=(a+2 b+4 c, a, 3 b+6 c) .
\end{gathered}
$$

Question (2).
Let $v \in M^{\perp}$. Then $\langle 1, v\rangle=0$ and $\left\langle x^{2}, v\right\rangle=0$
Since $V \in M^{\perp}$ and M^{\perp} is a subspace of P_{4}, then $v \in P_{4}$.

Hence, $\quad v=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$.
Then we have:

$$
\begin{aligned}
\langle 1, v\rangle & =\left\langle 1, a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right\rangle \\
& =\int_{0}^{1}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right) d x \\
& =\left[a_{0} x+a_{1} \frac{x^{2}}{2}+a_{2} \frac{x^{3}}{3}+a_{3} \frac{x^{4}}{4}\right]_{0}^{1} \\
& =a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{3}+\frac{a_{3}}{4}=0
\end{aligned}
$$

$$
\begin{aligned}
\left\langle x^{2}, v\right\rangle & =\left\langle x^{2}, a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right\rangle \\
& =\int_{0}^{1}\left(x^{2}\right)\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right) d x \\
& =\int_{0}^{1}\left(a_{0} x^{2}+a_{1} x^{3}+a_{2} x^{4}+a_{3} x^{5}\right) d x \\
& =\left[\frac{a_{0} x^{3}}{3}+a_{1} \frac{x^{4}}{4}+a_{2} \frac{x^{5}}{5}+a_{3} \frac{x^{6}}{6}\right]_{0}^{1} \\
& =\frac{a_{0}}{3}+\frac{a_{1}}{4}+\frac{a_{2}}{5}+\frac{a_{3}}{6}=0
\end{aligned}
$$

Now, M^{1} is the solution set of

$$
\begin{aligned}
& \left\{\begin{array}{l}
a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{3}+\frac{a_{3}}{4}=0 \\
\frac{a_{0}}{3}+\frac{a_{1}}{4}+\frac{a_{2}}{5}+\frac{a_{3}}{6}=0
\end{array}\right. \\
& {\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{cccc|c}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & 0 \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & 0
\end{array}\right]} \\
& \xrightarrow{R E F}\left[\begin{array}{llll|l}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & 0 \\
0 & 1 & \frac{16}{15} & 1 & 0
\end{array}\right] \\
& a_{0}+\frac{1}{2} a_{1}+\frac{1}{3} a_{2}+\frac{1}{4} a_{3}=0 \rightarrow a_{0}=-\frac{1}{2} a_{1}-\frac{1}{3} a_{2}-\frac{1}{4} a_{3} \\
& a_{1}+\frac{16}{15} a_{2}+a_{3}=0 \rightarrow a_{1}=-\frac{16}{15} a_{2}-a_{3} \\
& a_{2} \text { is a free variable } \\
& a_{0}=-\frac{1}{2}\left(-\frac{16}{15} a_{2}-a_{3}\right)-\frac{1}{3} a_{2}-\frac{1}{4} a_{3} \\
& a_{0}=\frac{1}{5} a_{2}+\frac{1}{4} a_{3}
\end{aligned}
$$

a_{3} is a free variable.

So, Sol. set $=\left\{\left.\left(\frac{1}{5} a_{2}+\frac{1}{4} a_{3}, \frac{-16}{15} a_{2}-a_{3}, a_{2}, a_{3}\right) \right\rvert\, a_{2}, a_{3} \in \mathbb{R}\right\}$

$$
\begin{aligned}
&=\left\{\left.a_{2}\left(\frac{1}{5}, \frac{-16}{15}, 1,0\right)+a_{3}\left(\frac{1}{4},-1,0,1\right) \right\rvert\, a_{2}, a_{3} \in \mathbb{R}\right\} \\
&=\operatorname{span}\left\{\left(\frac{1}{5}, \frac{-16}{15}, 1,0\right) \cdot\left(\frac{1}{4},-1,0,1\right)\right\} \\
&\left.\therefore M\right|^{1}=\operatorname{span}\left\{\left(\frac{1}{5}-\frac{16}{15} x+x^{2}\right) \cdot\left(\frac{1}{4}-x+x^{3}\right)\right\} .
\end{aligned}
$$

Question (3).
$\left\langle f_{1}, f_{2}\right\rangle=\int_{0}^{1} f_{1} f_{2} d x$ is an inner product on P_{2}.
And since $\mathbb{R}^{2} \cong P_{2}$, then $\mathbb{R}^{2}:(a, b) \rightarrow P_{2}:(a+b x)$.
Hence: $\left\langle\left(a_{1}+b_{1} x\right),\left(a_{2}+b_{2} x\right)\right\rangle=\int_{0}^{1}\left(a_{1}+b_{1} x\right)\left(a_{2}+b_{2} x\right) d x$

$$
\begin{aligned}
& =\int_{0}^{1}\left(a_{1} a_{2}+a_{1} b_{2} x+a_{2} b_{1} x+b_{1} b_{2} x^{2}\right) d x \\
& =\int_{0}^{1}\left(a_{1} a_{2}+\left(a_{1} b_{2}+a_{2} b_{1}\right) x+b_{1} b_{2} x^{2}\right) d x \\
& =\left[a_{1} a_{2} x+\frac{\left(a_{1} b_{2}+a_{2} b_{1}\right) x^{2}}{2}+\frac{b_{1} b_{2} x^{3}}{3}\right]_{0}^{1} \\
& =a_{1} a_{2}+\frac{a_{1} b_{2}+a_{2} b_{1}}{2}+\frac{b_{1} b_{2}}{3}
\end{aligned}
$$

Since $\left\langle\left(a_{1}+b_{1} x\right),\left(a_{2}+b_{2} x\right)\right\rangle=a_{1} a_{2}+\frac{1}{2}\left(a_{1} b_{2}+a_{2} b_{1}\right)+\frac{1}{3} b_{1} b_{2}$
is an inner product, then $\left\langle\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right)\right\rangle=a_{1} a_{2}+\frac{1}{2}\left(a, b_{2}+a_{2} b_{1}\right)+\frac{1}{3} b_{1} b_{2}$ is also an inner product (due to the isomorphic).

Question (4).

$$
\begin{aligned}
\operatorname{Let} Q_{1} & =\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right) \\
Q_{2} & =\left(b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right)
\end{aligned}
$$

Now, Canchy-Schwarz inequality states that

$$
\begin{aligned}
& \left\langle Q_{1}, Q_{2}\right\rangle^{2} \leqslant\left\langle Q_{1}, Q_{1}\right\rangle \cdot\left\langle Q_{2} \cdot Q_{2}\right\rangle \\
\rightarrow & {\left[Q_{1} \cdot Q_{2}^{\top}\right]^{2} \leqslant\left(Q_{1} \cdot Q_{1}^{\top}\right)\left(Q_{2} \cdot Q_{2}^{\top}\right) } \\
\rightarrow & {\left[\begin{array}{l}
\left.a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right] \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5}
\end{array}\right] \left\lvert\,\left[\begin{array}{l}
\left.b_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
a_{4} \\
a_{5}
\end{array}\right] \left\lvert\,\left[\begin{array}{l}
\left.b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right]
\end{array}\left|\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
b_{5}
\end{array}\right]\right|\right.\right. \\
\rightarrow \\
\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+a_{4} b_{4}+a_{5} b_{5}\right)^{2} \leqslant\left(a_{1} a_{1+\cdots}+\cdots+a_{5} a_{5}\right)\left(b_{1} b_{1}+\cdots+b_{5} b_{5}\right) \\
\therefore \\
\therefore\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}+a_{4} b_{4}+a_{5} b_{5}\right)^{2} \leqslant\left(a_{1}^{2}+\cdots+a_{5}^{2}\right)\left(b_{1}^{2}+\cdots+b_{5}^{2}\right) .
\end{array}\right.\right.}
\end{aligned}
$$

Question (s)
From Canchy-Shwarz inequality, we know that for $u, w \in V$, we have $\langle u, w\rangle^{2} \leqslant\langle u, u\rangle\langle w, w\rangle$
that's $\quad\langle u, w\rangle^{2} \leqslant\|u\|^{2}\|w\|^{2}$
that; $|\langle u, w\rangle| \leqslant\|u\|\|w\|$

Now, we have :

$$
\begin{aligned}
\|v+w\|^{2} & =\langle v+w, v+w\rangle \\
& =\langle v+w, v\rangle+\langle v+w, w\rangle \\
& =\langle v, v\rangle+\langle w, v\rangle+\langle v, w\rangle+\langle w, w\rangle \\
& =\langle v, v\rangle+\langle v, w\rangle+\langle v, w\rangle+\langle w, w\rangle \\
& =\langle v, v\rangle+2\langle v, w\rangle+\langle w, w\rangle \\
& =\|v\|^{2}+2\langle v, w\rangle+\|w\|^{2}
\end{aligned}
$$

$$
\because\|v+w\|^{2}=\|v\|^{2}+2\langle v, w\rangle+\|w\|^{2}
$$

since $|\langle u, w\rangle| \leqslant\|u\|\|w\|$, then

$$
\begin{aligned}
& \|v+w\|^{2} \leqslant\|v\|^{2}+2\|u\|\|w\|+\|w\|^{2} \\
& \|v+w\|^{2} \leqslant(\|v\|+\|w\|)^{2} \\
& \|v+w\| \leqslant\|v\|+\|w\|
\end{aligned}
$$

Question (6)
Orthogonal Basis:

$$
\begin{align*}
D & =\operatorname{span}\left\{Q_{1}, x^{3}, x^{4}\right\} \\
w_{1} & =Q_{1}=1 \\
w_{2} & =Q_{2}-\frac{\left\langle Q_{2}, w_{1}\right\rangle}{\left\|w_{1}\right\|^{2}} \cdot w_{1}=Q_{2}-\frac{\left\langle Q_{2}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} \\
& =x^{3}-\frac{\left\langle x^{3}, 1\right\rangle}{\langle 1,1\rangle} \cdot(1)=x^{3}-\frac{\int_{0}^{1} x^{3} d x}{\int_{0}^{1} 1 d x} \cdot(1) \\
& =x^{3}-\frac{\left[\frac{x^{4}-1}{4}\right]_{0}^{1}}{[x]_{0}^{1}} \cdot(1)=x^{3}-\frac{\frac{1}{4}}{1} \cdot(1)=x^{3}-\frac{1}{4} \\
w_{3} & =Q_{3}-\frac{\left\langle Q_{3}, w_{2}\right\rangle}{\left\|w_{2}\right\|^{2}}, w_{2}-\frac{\left\langle Q_{3}, w_{1}\right\rangle}{\left\|w_{1}\right\|^{2}} \cdot w_{1} \\
& =Q_{3}-\frac{\left\langle Q_{3}, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} \cdot w_{2}-\frac{\left\langle Q_{3}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} \cdot w_{1} \\
& =x^{4}-\frac{\left\langle x^{4}, x^{3}-\frac{1}{4}\right\rangle}{\left\langle x^{3}-\frac{1}{4}, x^{3}-\frac{1}{4}\right\rangle} \cdot\left(x^{3}-\frac{1}{4}\right)-\frac{\left\langle x^{4}, 1\right\rangle}{\langle 1,1\rangle} \cdot(1) \tag{1}\\
& =x^{4}-\frac{\int_{0}^{1} x^{4}\left(x^{3}-\frac{1}{4}\right) d x}{1} \cdot\left(x^{3}-\frac{1}{4}\right)-\frac{\left.\sum_{0}^{1} x^{4}-\frac{1}{4}\right)^{2} d x}{1} d x \\
& =x^{4}-\frac{[1)}{\left.\frac{\left[x^{8}\right.}{8}-\frac{x^{5}}{20}\right]_{0}^{1}}\left[\frac{x}{16}+\frac{x^{7}}{7}-\frac{x^{4}}{8}\right]_{0}^{1} \\
& \left(x^{3}-\frac{1}{4}\right)-\frac{\left[\frac{x^{5}}{5}\right]_{0}^{1}}{[x]_{0}^{1}} \cdot(1)
\end{align*}
$$

$$
\begin{aligned}
& =x^{4}-\frac{3 / 40}{9 / 112} \cdot\left(x^{3}-\frac{1}{4}\right)-\frac{1 / 5}{1} \cdot(1) \\
& =x^{4}-\frac{14}{15}\left(x^{3}-\frac{1}{4}\right)-\frac{1}{5} \\
& =x^{4}-\frac{14}{15} x^{3}+\frac{14}{60}-\frac{1}{5} \\
& =x^{4}-\frac{14}{15} x^{3}+\frac{1}{30}
\end{aligned}
$$

Orthonormal Basis:

$$
\begin{aligned}
& F_{1}=\frac{w_{1}}{\left\|w_{1}\right\|}=\frac{w_{1}}{\sqrt{\left\langle w_{1}, w_{1}\right\rangle}} \\
& \text { - }\left\|w_{1}\right\|=\sqrt{\left\langle w_{1}, w_{1}\right\rangle}=\sqrt{1}=1 \\
& F_{1}=\frac{1}{1}=1 \\
& F_{2}=\frac{w_{2}}{\left\|w_{2}\right\|}=\frac{w_{2}}{\sqrt{\left\langle w_{2}, w_{2}\right\rangle}} \\
& \text { - }\left\|w_{2}\right\|=\sqrt{\left\langle w_{2}, w_{2}\right\rangle}=\sqrt{9 / 112}=\frac{3 \sqrt{7}}{28} \\
& F_{2}=\frac{x^{3}-\frac{1}{4}}{\frac{3 \sqrt{7}}{28}}=\frac{4 \sqrt{7}}{3} x^{3}-\frac{\sqrt{7}}{3} \\
& F_{3}=\frac{\omega_{3}}{\left\|\omega_{3}\right\|}=\frac{w_{3}}{\sqrt{\left\langle\omega_{3}, \omega_{3}\right\rangle}} \\
& \text { - }\left\|w_{3}\right\|=\sqrt{\left\langle w_{3}, w_{3}\right\rangle}=\sqrt{1 / 900}=\frac{1}{30} \\
& F_{3}=\frac{x^{4}-\frac{14}{15} x^{3}+\frac{1}{30}}{\frac{1}{30}}=30 x^{4}-28 x^{3}+1
\end{aligned}
$$

Question (7).

$$
A=\left[\begin{array}{rr}
a & -3 \\
b & c
\end{array}\right]
$$

Since A is positive definit, then $b=-3$, and $a c-b^{2}>0$, then $a c-9>0$ and we know $a, c>0$ hence $a c>9$

Question (8)
Solve $\left\langle 4 x^{3}, 1-2 x\right\rangle=\left\langle c_{1}(1-2 x)+c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}, 1-2 x\right\rangle$

$$
\begin{aligned}
\left\langle 4 x^{3}, 1-2 x\right\rangle & =\int_{0}^{1} 4 x^{3}(1-2 x) d x \\
& =\int_{0}^{1}\left(4 x^{3}-8 x^{4}\right) d x \\
& =\left[\frac{4 x^{4}}{4}-\frac{8 x^{5}}{5}\right]_{0}^{1} \\
& =\left[x^{4}-\frac{8}{5} x^{5}\right]_{0}^{1} \\
& =1-\frac{8}{5} \\
& =\frac{-3}{5}
\end{aligned}
$$

$$
\begin{aligned}
&\left\langle c_{1}(1-2 x)+C_{2} V_{2}+c_{3} V_{3}+C_{4} V_{4}, 1-2 x\right\rangle \\
&=\left\langle c_{1}(1-2 x), 1-2 x\right\rangle+\left\langle c_{2} V_{2}, 1-2 x\right\rangle+\left\langle c_{3} V_{3}, 1-2 x\right\rangle+\left\langle c_{4} V_{4}, 1-2 x\right\rangle \\
&= c_{1}\langle 1-2 x, 1-2 x\rangle+c_{2}\left\langle V_{2}, 1-2 x\right\rangle+c_{3}\left\langle V_{3}, 1-2 x\right\rangle+c_{4}\left\langle v_{4}, 1-2 x\right\rangle
\end{aligned}
$$

Since $1-2 x$ and V_{2}, V_{3}, V_{4} are orthogonal, then their inner product is equal to zero.

$$
\begin{aligned}
& =c_{1}\langle 1-2 x, 1-2 x\rangle \\
& =c_{1} \int_{0}^{1}(1-2 x)^{2} d x \\
& =c_{1} \int_{0}^{1}\left(1-4 x+4 x^{2}\right) d x \\
& =c_{1}\left[x-\frac{4 x^{2}}{2}+\frac{4 x^{3}}{3}\right]_{0}^{1} \\
& =c_{1}\left[1-\frac{4}{2}+\frac{4}{3}\right] \\
& =\frac{1}{3} c_{1}
\end{aligned}
$$

So, we have:

$$
\begin{aligned}
-\frac{3}{5} & =\frac{1}{3} c_{1} \\
c_{1} & =\frac{-9}{5}
\end{aligned}
$$

${ }_{214}^{2.4} \mathbf{H W}$ VII

HW 7, MTH 512 , Fall 2019

Ayman Badawi

QUESTION 1. A matrix $A, m \times m$, is nilpotent if $A^{n}=0$ for some positive integer n. Let A be a nilpotent matrix 7×7 such that $m_{A}(\alpha)=\alpha^{3}$ and $I N\left(E_{0}(A)\right)=3$. Find all possible Jordan forms of A.

Find $C_{A}(\alpha)$.
QUESTION 2. Consider the normal dot product on R^{n}. Let A be a symmetric matrix over R. Convince me that all eigenvalues of A are real[Hint: Define $T: R^{n} \rightarrow R^{n}$ such that for every $Q=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R^{n}, T(Q)=A Q^{T}$. What is T^{*} ? and use similar argument as in class]

QUESTION 3. Consider the normal dot product on R^{n}. Let A be an orthogonal (unitary) matrix (i.e, $A^{T}=A^{-1}$) over R. Convince me that if $\alpha \in C$ is an eigenvalue of A, then $|\alpha|=1$.[Hint: Define $T: R^{n} \rightarrow R^{n}$ such that for every $Q=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R^{n}, T(Q)=A Q^{T}$. What is $T^{*} ?$ and use similar argument as in class]
QUESTION 4. Consider the normal dot product on R^{n}. Let A be a matrix (of course $n \times n$) such that A is nonsingular (i.e., invertible) and $A^{T}=A$ over R. Let $B=A^{2}$. Convince me that $B^{T}=B, B$ is invertible, and all eigenvalues of B are real and each eigenvalue is strictly larger than 0 (i.e., B is positive definite, so now you know how to construct positive definite matrices for every $n \times n$ matrix). [Hint: Define $T: R^{n} \rightarrow R^{n}$ such that for every $Q=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R^{n}$, $T(Q)=A Q^{T}$ and note that $<T^{2}(v), v>=<T(v), T(v)$? why?]

QUESTION 5. Given that $A, n \times n$ and the Jordan form of A is $J=J_{2}^{(3)} \oplus J_{2}^{(1)} \oplus J_{2}^{(1)} \oplus J_{6}^{(3)} \oplus J_{6}^{(3)}$. Find the value of n, $m_{A}(\alpha), C_{A}(\alpha), I N\left(E_{2}(A)\right)$, and $I N\left(E_{6}(A)\right)$. (note IN(something) means dim(something)). Is A diagnolizable? why?
QUESTION 6. Given a matrix $A, 5 \times 5$, with $C_{A}(\alpha)=(\alpha-3)^{3}(\alpha+4)^{2}$ and $m_{A}(\alpha)=(\alpha-3)(\alpha+4)^{2}$. Find the JORDAN form of A. For each eigenvalue a of A find $I N\left(E_{a}(A)\right)$ (i.e., find $\operatorname{dim}\left(E_{a}(A)\right)$.

QUESTION 7. Consider the normal dot product on R^{n}. Let A be a matrix (of course $n \times n$) such that $A^{T}=A$ over R. Assume that for some nonzero points Q_{1} and Q_{2} in R^{n}, we have $A Q_{1}^{T}=a Q_{1}^{T}$ and $A Q_{2}^{T}=b Q_{2}^{T}$ for some real numbers a, b such that $a \neq b$.Convince me that Q_{1} and Q_{2} are orthogonal. [Hint: use some hints from above!]
QUESTION 8. Give me an example of a matrix A such that $C_{A}(\alpha)=m_{A}(\alpha)=(\alpha-1)^{4}(\alpha+5)^{5}$. For the matrix A that you constructed, for each eigenvalue a of A find $I N\left(E_{a}(A)\right)$ (i.e., find $\operatorname{dim}\left(E_{a}(A)\right)$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

2.15 Solution to HW VII

Shaimaa Fatah

$$
85281
$$

Question 1

$$
\begin{aligned}
& m_{A}(x)=x^{3} \quad \& \operatorname{IN}\left(E_{0}\right)=3 \\
& C_{A}(x)=x^{7}
\end{aligned}
$$

Hence $A_{7 \times 7}$ has only two possible Jordan Forms:

$$
\begin{aligned}
& J=\int_{0}^{(3)} \oplus \int_{0}^{(3)} \oplus J_{0}^{(1)} \\
& J=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& J=\int_{0}^{(3)} \oplus J_{0}^{(2)} \oplus J_{0}^{(2)} \\
& J=\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Question 2
let A be symmetric matrix $\left(A=A^{\top}\right)$, then define

$$
\begin{aligned}
& T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad \text { s.t. } \quad \forall Q=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \\
& T(Q)=A Q^{\top}
\end{aligned}
$$

Now, $\langle T(Q), Q\rangle=\left\langle A Q^{\top}, Q\right\rangle$

$$
\begin{aligned}
& =\left(A Q^{\top}\right)^{\top} \cdot Q^{\top} \\
& =Q A^{\top} \cdot Q^{\top} \\
& =\left\langle Q \cdot A^{\top} Q^{\top}\right\rangle \\
& =\left\langle Q \cdot T^{*}(Q)\right\rangle
\end{aligned}
$$

Hence, by inner product propenty $\Rightarrow\langle T(Q), Q\rangle\rangle=\left\langle T^{*}(Q), Q\right\rangle$ (*)

$$
\begin{aligned}
& \Rightarrow T(Q)=T^{*}(Q) \\
& \Rightarrow A Q^{\top}=A^{\top} Q^{\top}
\end{aligned}
$$

$\Rightarrow T$ is symmetric
We know that: $T(Q)=\propto Q$, for $Q \neq 0$

$$
\left.\begin{array}{rl}
\langle T(Q), Q\rangle & =\langle\alpha Q, Q\rangle=\alpha\langle Q, Q\rangle \\
(*)\left\langle Q, T^{*}(Q)\right\rangle & =\langle Q, T(Q)\rangle
\end{array}\right)=\langle Q, \alpha Q\rangle=\bar{\alpha}\langle Q, Q\rangle
$$

$\Rightarrow \alpha=\bar{\alpha} \Rightarrow \alpha$ is a real number.

Question $\$ 3$
let A be orthogonal matrix $\left(A^{\top}=A^{-1}\right)$, then define $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ st. $\forall Q=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$

$$
T(Q)=A Q^{\top}
$$

Now, $\langle T(Q), Q\rangle=\left\langle A Q^{\top}, Q\right\rangle$

$$
=\left(A Q^{\top}\right)^{\top} \cdot Q^{\top}
$$

$$
=Q A^{\top} Q^{\top}
$$

$$
=\left\langle Q, A^{\top} Q^{\top}\right\rangle
$$

$$
=\left\langle Q, A^{-1} Q^{\top}\right\rangle
$$

$$
=\left\langle Q, T^{*}(Q)\right\rangle
$$

Hence, $T^{*}(Q)=A^{-1} Q^{\top}=T^{-1}(Q)$
$\Rightarrow T$ is orthogonal
By: $T(Q)=x Q, Q \neq 0$
$\langle T(Q), Q\rangle=\langle\alpha Q, Q\rangle=\alpha\langle Q, Q\rangle$
$\left\langle Q, T^{*}(Q)\right\rangle=\left\langle Q, T^{-1}(Q)\right\rangle=\left\langle Q, \frac{1}{\alpha} Q\right\rangle=\frac{1}{\bar{\alpha}}\langle Q, Q\rangle$
$\Rightarrow \alpha=\frac{1}{\bar{\alpha}} \Rightarrow \alpha \bar{\alpha}=1$
$\Rightarrow|\alpha|=1$

Question 4

- let $A_{n \times n}$ be invertible matrix s.t. $A^{\top}=A$
- Let $B=A^{2}$

Define $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ st. $\forall Q \in \mathbb{R}^{n}, T(Q)=A Q^{\top}$
Define $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ st. $\forall P \in \mathbb{R}^{n}, \quad F(P)=A^{2} P^{\top}$

$$
=B P^{\top}
$$

\Rightarrow Want to show that $B^{\top}=B$:

$$
\begin{aligned}
B^{\top}=\left(A^{2}\right)^{\top}=(A A)^{\top} & =A^{\top} A \quad\left(\text { since } A^{\top}=A\right) \\
& =A^{\top} A^{\top} \\
& =A A=A^{2}=B
\end{aligned}
$$

\Rightarrow want to show that $A l l$ eigenvalues of B are real: (same method as Q)

$$
\begin{aligned}
\langle F(P), P\rangle & =\left\langle B P^{\top}, P\right\rangle \\
& =\left(B P^{\top}\right)^{\top} P^{\top} \\
& =P B^{\top} P^{\top} \\
& =\left\langle P, B^{\top} P^{\top}\right\rangle \\
& =\left\langle P, F^{*}(P)\right\rangle
\end{aligned}
$$

Hence $F^{*}(P)=F(P)$
From QN2 2 all eigenvalues of B are real.
\Rightarrow want to show that each eigenvalue is >0 :

$$
\begin{aligned}
\langle F(P), P\rangle & =\left\langle T^{2}(P), P\right\rangle \\
& =\left\langle T(P), T^{*}(P)\right\rangle \\
& =\langle T(P), T(P)\rangle \neq 0 \\
& \left.=\|T(P)\|^{2}\right\rangle 0
\end{aligned}
$$

Since $|A| \neq 0 \Rightarrow \alpha=0$ is not eigenvalue.

$$
\Rightarrow\langle F(P), P\rangle\rangle 0 \quad \& F=F^{*}
$$

$\Rightarrow F$ is positive definite.

Question 5

$$
J=J_{2}^{(3)} \oplus J_{2}^{(1)} \oplus J_{2}^{(1)} \oplus J_{6}^{(3)} \oplus J_{6}^{(3)}
$$

(1) $n=11$
(2) $m_{A}(x)=(x-2)^{3}(x-6)^{3}$
(3) $C_{A}(x)=(x-2)^{5}(x-6)^{6}$
(4) $\operatorname{IN}\left(E_{2}(A)\right)=3$
(5) $\operatorname{IN}\left(E_{6}(A)\right)=2$
A is not diagonizable since we have repeated roots.
Question * 6

$$
\begin{aligned}
& C_{A}(\alpha)=(\alpha-3)^{3}(\alpha+4)^{2} \\
& m_{A}(x)=(\alpha-3)(\alpha+4)^{2} \\
& \Rightarrow J=J_{3}^{(1)} \oplus J_{3}^{(7)} \oplus J_{3}^{(1)} \oplus J_{-4}^{(2)} \\
& \Rightarrow \operatorname{IN}\left(E_{3}\right)=3 \quad \& \operatorname{IN}\left(E_{-4}\right)=1 \\
& J=\left[\begin{array}{ccccc}
3 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & -4 & 1 \\
0 & 0 & 0 & 0 & -4
\end{array}\right]
\end{aligned}
$$

Question 17
let $A_{n \times n}$ be symmetric s.t. $A^{\top}=A$, \& Assume non-zero points $Q_{1}, Q_{2} \in \mathbb{R}^{n}$ \& Some real numbers $a \neq b$
st.

$$
\begin{aligned}
& A Q_{1}^{\top}=a Q_{1}^{\top} \\
& A Q_{2}^{\top}=b Q_{2}^{\top}
\end{aligned}
$$

\Rightarrow show that $Q_{1} \& Q_{2}$ are orthogonal.
Case 1 If $\left\langle Q_{1}, Q_{2}\right\rangle=0$, done
Case 2 If $\left\langle Q_{1}, Q_{2}\right\rangle \neq 0$

$$
\begin{aligned}
a\left\langle Q_{1}, Q_{2}\right\rangle & =\left\langle a Q_{1}, Q_{2}\right\rangle \\
& =\left\langle T\left(Q_{1}\right), Q_{2}\right\rangle \\
& =\left\langle Q_{1}, T^{*}\left(Q_{2}\right)\right\rangle \\
& =\left\langle Q_{1}, T\left(Q_{2}\right)\right\rangle \\
& =\left\langle Q_{1}, b Q_{2}\right\rangle \\
& =\bar{b}\left\langle Q_{1}, Q_{2}\right\rangle=b\left\langle Q_{1}, Q_{2}\right\rangle
\end{aligned}
$$

\Rightarrow Hence $a=b \quad!$ contradiction
Since we assume $a \neq b$
\Rightarrow Thus Q_{1}, Q_{2} orthogoncel.

Question 8

$$
\begin{aligned}
& c_{A}(\alpha)=m_{A}(\alpha)=(\alpha-1)^{4}(\alpha+5)^{5} \\
& \Rightarrow A_{9 \times 9} \text { matrix } \\
& {\left[\begin{array}{ccccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -5 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -5 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -5 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -5 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -5
\end{array}\right]=J} \\
& \Rightarrow \operatorname{IN}\left(E_{1}\right)=1 \\
& \operatorname{IN}\left(E_{-5}\right)=1
\end{aligned}
$$

${ }_{216}^{2.6}$ HW VIII

HW 8, MTH 512 , Fall 2019

Ayman Badawi

QUESTION 1. Let A be a skew-symmetric matrix (i.e., $A^{T}=-A$) ,2019 $\times 2019$. Convince me that A is not invertible. QUESTION 2. Let $A=J_{3}^{(2)} \oplus J_{2}^{(2)} \oplus J_{3}^{(1)}$. Find the rational form of A.
QUESTION 3. Let $T: V \rightarrow V$ be a linear transformation. Consider the linear transformation $F=T^{2}+5 T+2019 I$: $V \rightarrow V$. Let $W=Z(F)$. Convince me that $T(w) \in W$ for every $w \in W$.
QUESTION 4. Find the Smith form of $\left[\begin{array}{ccc}3 & 6 & 3 \\ -3 & 0 & 3 \\ -3 & -6 & 0\end{array}\right]$ (i.e., find D, R, C such that $D=R A C$ (see class notes))
QUESTION 5. Let $A=\left[\begin{array}{lllll}2 & 4 & 4 & 2 & 6 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 6 \\ 0 & 0 & 0 & 0 & 3\end{array}\right]$

1) Find $C_{A}(x)$
2) Use your favorite software and find $m_{A}(x)$.
3) For each eigenvalue a of A find $I N\left(E_{a}\right)$ (i.e., Find the dimension of the eigenspace of A that corresponds to the eigenvalue a).
4) Find the Jordan form of A
5) Find the rational form of A.

QUESTION 6. 1) First show that $m_{A}(x)=m_{A^{T}}(x)$ of course A is $n \times n$ (so EASY).
2) Assume A, B, C are $n \times n$ matrices such that A is similar to B and B is similar to C (Recall that M, N are similar iff there exists an invertible matrix Q such that $M=Q N Q^{-1}$). Convince me that A is similar to C.
3) Now BIG result Show that if A is an $n \times n$ matrix. Then A is similar to A^{T} (waw waw result) [Hint: We know that $C_{A}(x)=C_{A^{T}}(x)$. By (1) we know $m_{A}(x)=m_{A^{T}}(x)$. We know $I N\left(E_{a}\right)$ when a is an eigenvalue of A equals to $I N\left(E_{a}\right)$ when a (same a) as an eigenvalue of A^{T} (not matter if a is real or complex number). Now what can we say about the rational form of A and A^{T} ? then use (2), just a beautiful result with easy proof]

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

2.17 Solution to HW VIII

. Name: Farah Ajeeb

$$
. I D: 900077394
$$

Homework 8

* Question 1: Let A be a skew -symmetric matrix ($\left.A^{\top}=-A\right)$ such that A is 2019×2019
- Since A is of odd size, its characteristic polynomial is of odd degree, such a polynomial has at least one real root, hence A has at least one real eigenvalue
Let α be the real eigenvalue of A, then $A x=\alpha x$ for $x \neq 0$.

$$
\begin{aligned}
\text { So } \alpha\langle x, x\rangle & =\langle x, \bar{\alpha} x\rangle \\
& =\langle x, \alpha x\rangle \text { since } \alpha \text { is real } \\
& =\langle x, A x\rangle \\
& =x^{\top} A x \\
& =\left(A^{\top} x\right)^{\top} x \\
& =\left\langle A^{\top} x, x\right\rangle \\
& =-\langle A x, x\rangle \\
& =-\langle\alpha x, x\rangle \\
& =-\alpha\langle x, x\rangle
\end{aligned}
$$

Since $\langle x, x\rangle \neq 0$ then $\alpha=-\alpha \Rightarrow 2 \alpha=0 \Rightarrow \alpha=0$
thus A is not invertible

* Question 2 :

Let $A=J_{3}^{(2)} \oplus J_{2}^{(2)} \oplus J_{3}^{(1)}$
then $C_{A}(x)=(x-3)^{3}(x-2)^{2}$
and $m_{A}(x)=(x-3)^{2}(x-2)^{2}$
thus $R_{A}=C\left(f_{1}\right) \oplus C\left(f_{2}\right) \oplus C\left(f_{3}\right)$
such that $f_{1}=(x-3)^{2}=x^{2}-6 x+9$

$$
\begin{aligned}
& f_{2}=(x-2)^{2}=x^{2}-4 x+4 \\
& f_{3}=x-3
\end{aligned}
$$

hence $R_{A}=\left[\begin{array}{ccccc}0 & -9 & 0 & 0 & 0 \\ 1 & 6 & 0 & 0 & 0 \\ 0 & 0 & 0 & -4 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 3\end{array}\right]$

* Question 3: Let $T: V \rightarrow V$ be a linear tran formation and $F: V \rightarrow V$ such that $F=T^{2}+5 T+2019 I$. Let $W=Z(F)$
for every $\omega \in W$ we have:

$$
F(\omega)=0
$$

hence $\left.T\left(T^{2}(\omega)+5 T(\omega)+2019 \omega\right)=0\right)$

$$
\begin{aligned}
& \Rightarrow T\left(T^{2}(\omega)\right)+5 T(T(\omega))+2019 T(\omega)=T(0) \\
& \Rightarrow T^{2}(T(\omega))+5 T(T(\omega))+2019 T(\omega)=0 \\
& \Rightarrow F(T(\omega))=0 \\
& \Rightarrow T(\omega) \in Z(F)
\end{aligned}
$$

$\Rightarrow T(\omega) \in W$ for every $\omega \in W$

* Question $4:$

$$
\operatorname{Let} A=\left[\begin{array}{ccc}
3 & 6 & 3 \\
-3 & 0 & 3 \\
-3 & -6 & 0
\end{array}\right]
$$

step 1: $\operatorname{gcd}($ all entries of $A)=d_{1}=3$
Step 2: $|A|=|D|=-6\left|\begin{array}{cc}-3 & 3 \\ -3 & 0\end{array}\right|+6\left|\begin{array}{cc}3 & 3 \\ -3 & 3\end{array}\right|$

$$
\begin{aligned}
& =-6(+9)+6(9+9) \\
& =-54+108 \\
& =54
\end{aligned}
$$

thus $d_{1}=d_{2}=3$ and $d_{3}=6$
Hence $D=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6\end{array}\right]$
and $D=R A C$

$$
\left.\begin{array}{cccc}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]} \\
{\left[\begin{array}{lll}
3 & 6 & 3 \\
-3 & 0 & 3 \\
-3 & -6 & 0
\end{array}\right]} \\
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

* Question 5 :

$$
\operatorname{Let} A=\left[\begin{array}{lllll}
2 & 4 & 4 & 2 & 6 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 3 & 6 \\
0 & 0 & 0 & 0 & 3
\end{array}\right]
$$

1) $C_{A}(x)=(x-2)^{3}(x-3)^{2}$
2) By using online cal culator: $m_{A}(x)=(x-2)^{2}(x-3)^{2}$
3) We have two eigenvalues 2 and 3 :

$$
\begin{aligned}
& \operatorname{IN}\left(E_{2}\right)=2 \\
& \operatorname{IN}\left(E_{3}\right)=1
\end{aligned}
$$

4)

$$
\begin{aligned}
J & =J_{2}^{(2)} \oplus J_{3}^{(2)} \oplus J_{2}^{(1)} \\
& =\left[\begin{array}{lllll}
2 & 1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 3 & 1 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]
\end{aligned}
$$

5) $\quad R_{A}=C\left(f_{1}\right) \oplus C\left(f_{2}\right) \oplus C\left(f_{3}\right)$
where $f_{1}=(x-2)^{2}=x^{2}-4 x+4$

$$
\begin{aligned}
& f_{2}=(x-3)^{2}=x^{2}-6 x+9 \\
& f_{3}=(x-2)
\end{aligned}
$$

thus $R_{A}=\left[\begin{array}{ccccc}0 & -4 & 0 & 0 & 0 \\ 1 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & -9 & 0 \\ 0 & 0 & 1 & 6 & 0 \\ 0 & 0 & 0 & 0 & 2\end{array}\right]$

* Question 6 :

1) Suppose $m_{A}(x)=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}$ and $m_{A^{\top}}(x)=x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}$
. we know that $m_{A^{\top}}\left(A^{\top}\right)=0$

$$
\text { and } m_{A}\left(A^{\top}\right)=\left(A^{\top}\right)^{m}+a_{m-1}\left(A^{\top}\right)^{m-1}+\cdots+a_{1} A^{\top}+a_{0} I_{m}
$$

$$
\begin{aligned}
& =\left(A^{\top}\right)^{m}+a_{m-1}(A)+\cdots+a_{1} H+a_{0} \operatorname{Im} t^{\top} \text { since } m_{A}(A)=0 \\
& =\left(A^{m}+a_{m-1} A^{m-1}+\cdots+a_{1} A+a_{0}\right.
\end{aligned}
$$

$$
=0
$$

thus $m_{A^{\top}}(x)$ divides $m_{A}(x)$
and we know that $m_{A}(A)=0$

$$
\text { and } \begin{aligned}
& m_{A T}(A)=A^{n}+b_{n-1} A^{n-1}+\cdots+b_{1} A+b_{0} I_{n} \\
&=\left[\left(A^{\top}\right)^{n}+b_{n-1}\left(A^{\top}\right)^{n-1}+\cdots+b_{1} A^{\top}+b_{0} I n\right]^{\top} \sin c e \\
& m_{A}((A))=0 \\
&=0
\end{aligned}
$$

thus $m_{A}(x)$ divides $m_{A^{T}}(x)$
therefore they must be equal
2) A is similar to $B \Rightarrow A=Q B Q^{-1}$
B is similar to $C \Rightarrow B=P C P^{-1}$
then $A=Q\left(P C P^{-1}\right) Q^{-1}$

$$
\begin{aligned}
& =Q P C(Q P)^{-1} \rightarrow \operatorname{det} W=Q P \Rightarrow W^{-1}=(Q P)^{-1} \\
& =W C W^{-1}
\end{aligned}
$$

therefore A and C are simi far.
3) We know that $C_{A}(x)=C_{A^{\prime}}(x)$ we proved in (1) that $m_{A}(x)=m_{A T}(x)$
Moreover, IN(Ea) is the same for A and A^{\top} So we can conclude that $R_{A}=R_{A T}$
and we know that A is similar to R_{A}
and $R_{A^{\top}}{ }^{T}=R_{A}$ is similar to A^{\top}
thus by (2) A is similar to A^{\top}.

2.18 Handout on Jordan and Rational forms

Questions on Last Lecture

Notes:
Why Do we are about A is similar to B ?
(1) $C_{A}(x)=C_{B}(x)$
(2) $m_{A}(x)=m_{B}(x)$
(3) eigenvalues of $A=$ eigenvalues of B
(4) If α is an eigen value of A (and hence it is an eigenvalue of $B), \operatorname{dim}\left(E_{\alpha}\right)$ [considering]

$$
=\operatorname{dim}\left(E_{\alpha}\right)[\text { considaing } B]
$$

$$
\begin{align*}
& A=V_{3}^{(4)} \oplus V_{3}^{(2)} \oplus V_{1}^{(5)} \tag{+1}\\
& m_{A}(x)=(x-3)^{4}(x-1)^{5} \\
& C_{A}(x)=(x-3)^{6}(x-1)^{8}
\end{align*}
$$

(1) (Questions and answers on Last Lecture)
connection: What I called canonical form, it is known as companion matrix, so we will stick with this name.
\Rightarrow Q. $A=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$. Convince me that A is diagnolizable.
A. By staring, A is the companion matrix of

$$
\begin{aligned}
& f(x)=x^{3}-x=m_{A}(x)=c_{A}(x) \text {. Since e } m^{3}-x=x(x-1)\left(x_{A}\right) \\
& \text { we know that } A \text { is diaandizable. }
\end{aligned}
$$

we know that A is diagndizable.
\Rightarrow Q. $A=\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 2\end{array}\right]$. Convince m. that A is not diagndizadle.

A: By staring, A is the companion matrix of $f(x)=x^{3}-2 x^{2}+x=C_{A}(x)=m_{A}(x)$. Since $m_{A}(x)=x(x-1)^{2}$, we know by class-Theonem, A is not diagnolizable.
$\frac{\text { (Doing L.A }}{(2)}$ by starring)
\Rightarrow Q. Assume $A, 3 \times 3$, is symmetric will it be possible that $c_{A}(x)=x\left(x^{2}+1\right)$ Z
A. NO, By class notes, all eigenvalues of A ane real.
\Rightarrow O. Is $A=\left[\begin{array}{cccc}0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 0\end{array}\right]$ triangu lizadle?
A. by staring, $c_{k}(x)=m_{x}(x)=\left(x^{2}-1\right)^{2}$. Since $m_{f}(x)=(x-1)^{2}(x+t)^{2}$, we conclude that A is triangylizabled (lass notes).
\Rightarrow Q. Is $A=\left[\begin{array}{ccc}2 & 1 & 0 \\ 0 & 1 \\ 0 & 0 & 2\end{array}\right]$ diagnolizable?
Find $\operatorname{dim}\left(E_{2}\right)\left(\right.$ note $\left.\operatorname{dim}\left(E_{2}\right)=\operatorname{IN}\left(E_{2}\right)\right)$
A. By staring, $A=\int_{2}^{(3)}$, Hence without Calculation $\operatorname{dim}\left(E_{2}\right)=1$.
(3) Doing LA by staring
\Rightarrow Q. Given $C_{A}(x)=(x-2)^{3}(x-5)$ and $\operatorname{dim}\left(E_{2}\right)=2\left(\right.$ ie, $\left.\operatorname{IN}\left(E_{2}\right)=2\right)$.
Find $m_{A}(x)$ and Jordan form of A
A. Let us think and stane at $C_{A}(x)$. sind $\operatorname{dim}\left(E_{2}\right)=2$ and $\operatorname{dim}\left(E_{5}\right)=1$, we condone that A is not diagnolizable. Hence $m_{A}(x) \neq(x-2)(x-5)$. Thus $m_{A}(x)=(x-2)^{2}(x-5)$ on $m_{A}(x)=(x-2)^{3}(x-5)$.
suppose $m_{A}(x)=(x-2)^{2}(x-5)$. The vordan-form of A is (x) $V_{2}^{(2)} \oplus J_{2}^{(1)} \oplus J_{5}^{(1)}$,
Suppose $m_{A}(x)=(x-2)^{3}(x-5)$. Then Vordan-form $\int_{2}^{(3)} \oplus V_{5}^{(1)}$, this is impossible, since dim $\left(E_{2}\right)_{=2}$
Thus $m_{A}(x)=(x-2)^{2}(x-5)$ and the Jondar - farm of A is

(4) Doing L.A. by Storing
\Rightarrow Q. Given $C_{A}(x)=(x-1)^{3}(x-2)$, and $\operatorname{dim}\left(E_{1}\right)=1$. Find $m_{N}(x)$ and the Jordan form of A.
A. Leta us at ane all possible Sondan-Blet Since each Jondan-block contribute only to the dimension of an eigenspice. Clearly $S_{1}^{(3)} \oplus J_{2}^{(1)}$ is the Jordan - form of $A\left(\operatorname{cnote} \operatorname{dim}\left(\Sigma_{1}\right)=1\right.$ and $\left.\operatorname{dim}\left(E_{2}\right)=1\right)$ -
Hence $m_{A}(x)=c_{A}(x)=(x-1)^{3}(x-2)$
So A is simile to

$5 \frac{\text { Doing Linen Algebra by Staring }}{(2)}$
Q. Assume $J_{3}^{(2)} \oplus U_{3}^{(2)} \oplus J_{3}^{(1)} \oplus V_{2}^{(3)}$ is the Jordan + form of a matrix A
(()-A) What is the size of A? (smile and say, clearly 8×8 by staring at $(2)+(2)+(1)+(3)$ So A is 8×8 -
(-A) 2) Find $C_{A}(x): C_{\text {earn }} y C_{A}(x)=(x-3)^{5}(x-2)^{3}$.
(3) Find $m_{f}(x)$ -

By staring $m_{A}(x)=(x-3)^{2}(x-2)^{3}$ -
(4) Find $\operatorname{dim}\left(E_{3}\right)$ and $\operatorname{dim}\left(E_{2}\right)$.

Answer: $\operatorname{dim}\left(E_{3}\right)=3$ (note each Jordan block contributes one dotimension)

$$
\operatorname{dim}\left(E_{2}\right)=1
$$

(6) Doing, Linear Algebra by Staring

Read
Q. $A, n \times n$ is nipotent if $A^{K}=0$-matrix for some positive integer K.

Clearly if A is nilpotent, then 0 is the only eigenvalue of A (for if α is an eigenvally. of A, then α^{k} is an eigenvalue of A^{k}, but $A^{K}=0$-matrix, so \cong is the only eigan-alue of A).

Find $C_{A}(x)$.
A.
$C_{A}(x)=x^{n}$.

Q(7) Let A be an nun matrix and nilpotent. Convince me that $A^{n}=$ o-matrix.
A. $C_{A}(x)=x^{n}$. By Caley-HamiltonT We know $C_{A}(A)=A^{n}=0$-matrix. and hon zero-
Q \& .
Let $A, n \times n$, be idempotent t' Convince me that $m_{A}(x)=x-1$ or $m_{A}(x)=x(x-1)$
A. A is idempotent $\Rightarrow A^{2}=A \Rightarrow$

$$
A^{2}-A=0 \text { matrix. so let }
$$

$$
\begin{aligned}
& A^{2}-A=0 \text {-matrix sol et } \\
& f(x)=x^{2}-x \text {. Then } f(A)=A^{2}-A=0 \text {-matrix }
\end{aligned}
$$

Hence $m_{A}(x)=x$ or $m_{A}(x)=x$ - 10 m
$m_{A}(x)=x^{2}-x$. Since A is non-zono, $m_{A}(x) \neq x$. If $A=I_{n}$, then $m_{A}(x)=$
If $A \neq I_{n}$, then $m_{A}(x)=x(x-1)$
Qq. Let A de idempotent, $n \times n$, s.t. $A \neq I_{n}$ and $A \neq 0$-matrix. $\quad x^{2} x=$ Show $m_{A}(x)=x^{2}-x=x(x-1)$.

Doing L.A. by staring
A. By Question 8, $m_{A}(x) \neq x, m_{A}(x) \neq$ $(x-1)$, Hence $m_{A}(x)=x(x-1)$.
Q. Convince me that every non-zeno idempotent matrix is diagnolizadle.
$A:$ If $A=I_{n}$, then A is diagonal.

$$
\text { If } A \neq I_{n}, T^{\text {then }} \cdot m_{A}(x)=x^{2}-x=x(x-1) \text {. }
$$

Hence by class-Result, A is diagnolizable.
Q. Let A be nonzero idempotent nutria sit. $A \neq I_{n}$. Convince me that $C_{A}(x)=x^{k}(x-1)^{l}$ s. tel $\underline{l+t}=n$
A- Since $m_{A}(x)=x^{2}-x$ and $m_{A}(x)^{\text {and }} C_{A}(x)$ have the same eigonvaluesand $\operatorname{deg}\left(C_{A}(x)\right)=n$, we conclude that $C_{A}(x)=x^{e}(x-1)^{k}$ sit. $k+l=n$.
(9)
Q. Assume $A^{\frac{5}{55}}$ is a nonzero idempotent matrix and $A \neq I_{S}$ Given $\operatorname{dim}\left(E_{0}\right)=3$. Find the Vordan-form of A -
A. We know $m_{A}(x)=x(x-1)$. Hence A is diagnolizable. Since $\operatorname{dim}\left(E_{0}\right)=3, \operatorname{dim}\left(E_{1}\right)=2$. Thus Sordan-form is

$$
\begin{aligned}
& j_{0}^{(1)} \oplus J_{0}^{(1)} \oplus J_{0}^{(1)} \oplus V_{1}^{(1)} \oplus U_{1}^{(1)} \\
\Rightarrow & {\left[\begin{array}{lllll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow \begin{array}{l}
\text { A is similar } \\
\text { to this } \\
\text { Sondan-form }
\end{array} }
\end{aligned}
$$

(10) Doing L.A. Wy staring

Q - Stane at this matrix in Jordan- form

$$
\left[\begin{array}{lllll}
2 & 1 & 0 & 0 & 0 \\
0 & 2 & 10 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],
$$

Find $C_{A}(x), m_{A}(x), \operatorname{dim}\left(E_{2}\right), \operatorname{dim}\left(E_{5}\right)$
A. By staring, A is similar to

$$
V_{2}^{(4)} \oplus V_{5}^{(2)}
$$

Hence $C_{A}(x)=(x-2)^{4}(x-5)^{2}$ -

$$
\begin{array}{r}
\text { Hence } C_{A}(x)=(x-2)^{4}(x-5)^{2} \\
m_{A}(x)=1, \operatorname{dim}\left(E_{5}\right)=1 \\
\operatorname{dim}\left(E_{2}\right)=1,
\end{array}
$$

(note each Vordan-Block contributes \pm to the dimension).

3 Section 5: Two Exams and Final

3.1 Exam One

Review Exam one MTH 512, Fall 2019

Ayman Badawi

QUESTION 1. Let A be a 3×5 such that $A \overbrace{2 R_{2}} B \overbrace{-R_{2}+R_{3} \rightarrow R_{3}} \quad D=\left[\begin{array}{ccccc}1 & 0 & 2 & -1 & 1 \\ 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2\end{array}\right]$
(i) Find the solution set to the system $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{c}-1 \\ 1 \\ 6\end{array}\right]$ [Hint: Note that the solution set is a subset of R^{5} and think!].
(ii) Find Elementary matrices E_{1}, E_{2} such that $E_{1} E_{2} A=D$
(iii) Let $D=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]\left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right]$. Find the matrix D without doing the actual multiplication of these 5 matrices [Stare well and think!]

QUESTION 2. (i) Let A be an $n \times n$ invertible matrix. Convince me (i.e. prove) that if a is an eiginvalue of A, then a^{-1} is an eigenvalue of A^{-1}. Also, convince me that $E_{a}=E_{a^{-1}}$.
ii) Given A is a 3×3 diagnolizable matrix with eigenvalues $2,-2$ such that $E_{-2}=\operatorname{span}\{(1,2,3),,(-1,-2,-2)\}$ and $E_{2}=\operatorname{span}\{(-1,-1,-3)\}$.
a. Find $|A|$ and Trace(A)
b. Find a diagonal matrix D and an invertible matrix Q such that $D=Q A Q^{-1}$ (Do not calculate Q^{-1}).
c. Find $C_{A^{-1}}(\alpha)$.
d. Find $C_{A^{2}}$ and calculate A^{2}.
(iii) Let A be an $n \times n$ matrix. Suppose that there is a real number r such that the sum of all numbers in each column of A equals r. Convince me that r is an eigenvalue of A.
(iv) Let A be a 13×13 matrix. Convince me that A must have at least one real eigenvalue.
(v) Let A be a 4×4 matrix and $C_{A}(\alpha)=(\alpha-3)^{2}(\alpha-2)^{2}$ such that $E_{3}=\operatorname{span}\{(2,1,1,1)\}$ and $\left.E_{2}=\operatorname{span}\{-2,1,0,1)\right\}$.
a. What is the solution set to the system $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=5\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$?
b. Let $F=5 I_{4}+2 A^{-1}+3 A$. Give me a nonzero point Q and a real number a such that $F Q^{T}=a Q^{T}$.

QUESTION 3. Let $A=\left[\begin{array}{ccccc}-c_{5} & a_{2} & a_{3} & -2 c_{1} & a_{5} \\ c_{3} & b_{2} & b_{3} & -c_{1} & b_{5} \\ c_{1} & -2 & c_{3} & -1 & c_{5}\end{array}\right]$. Given A is row-equivalent to $B=\left[\begin{array}{ccccc}2 & 4 & 4 & 2 & 4 \\ 0 & 1 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a)Find the matrix A.
(b) Find a basis of $\operatorname{Col}(A)$.

QUESTION 4. Given $B=\{(0,1,1),(1,0,-1),(2,-2,-1)\}$ is a basis for R^{3} and $Q=(2,6,-1) \in R^{3}$. Find $[Q]_{B}$.

QUESTION 5. Let $D=\{(3 a+5 b+2,-2 b+1,6 a+8 b+5,6 b-3,3 a+3 b+3) \mid a, b \in R\}$.
(a) Convince me that D is a subspace of R^{5}.
(b) Find an orthogonal basis of D.

QUESTION 6. Let $A=\left[\begin{array}{cccc}2 & 4 & 1 & -3 \\ -2 & b_{2} & b_{3} & b_{4} \\ -2 & -4 & c_{3} & c_{4} \\ -2 & -4 & -1 & d_{4}\end{array}\right]$. Assume that a point $Q=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is selected randomly from R^{4}. Find all possible values of $b_{2}, b_{3}, b_{4}, c_{3}, c_{4}, d_{4}$ so that the system $A\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right]=Q^{T}$ has a unique solution.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

3.2 Solution to Exam I

Review Exam one MTH 512, Fall 2019

Ayman Badawi

QUESTION 1. Let A be a 3×5 such that $A \overbrace{2 R_{2}} B \overbrace{-R_{2}+R_{3} \rightarrow R_{3}} D=\left[\begin{array}{ccccc}1 & 0 & 2 & -1 & 1 \\ 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2\end{array}\right]$
(i) Find the solution set to the system $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{c}-1 \\ 1 \\ 6\end{array}\right]$ [Hint: Note that the solution set is a subset of R^{5} and think!]. SOLUTION 1.1. We need to form the augmented matrix. Note that A is the coefficient matrix. Hence $\left[A \left\lvert\,\left[\begin{array}{c}-1 \\ 1 \\ 6\end{array}\right]\right.\right.$] is the augmented matrix. By hypothesis A is reduced to D by row operations. Hence here we go
$\left[A \left\lvert\,\left[\begin{array}{c}-1 \\ 1 \\ 6\end{array}\right]\right.\right] \overbrace{2 R_{2}}\left[B \left\lvert\,\left[\begin{array}{c}-1 \\ 2 \\ 6\end{array}\right]\right.\right] \overbrace{-R_{2}+R_{3} \rightarrow R_{3}} D=\left[\begin{array}{ccccc:c}1 & 0 & 2 & -1 & 1 & -1 \\ 0 & 1 & 2 & 0 & 3 & 2 \\ 0 & 0 & 0 & 1 & 2 & 4\end{array}\right] \overbrace{R_{3}+R_{1} \rightarrow R_{1}} \quad F=$ $\left[\begin{array}{lllll:l}1 & 0 & 2 & 0 & 1 & 3 \\ 0 & 1 & 2 & 0 & 3 & 2 \\ 0 & 0 & 0 & 1 & 2 & 4\end{array}\right]$. Hence we stop and read
$x_{1}=3-2 x_{3}-x_{5}, x_{2}=2-2 x_{3}-3 x_{5}, x_{4}=4-2 x_{5}$. Note x_{1}, x_{2}, x_{4} are leading variables and $x_{3}, x_{5} \in R$ (free variables).
Thus the solution set $=\left\{\left(3-2 x_{3}-x_{5}, 2-2 x_{3}-3 x_{5}, x_{3}, 4-2 x_{5}, x_{5}\right) \mid x_{3}, x_{5} \in R\right\}$
Since the system is not homogeneous, the solution set is a SUBSET of R^{5} but NEVER a subspace of R^{5} and hence it cannot be written as span. Also; note that we cannot talk about independent number (dimension) [since it is not a Subspace].
(ii) Find Elementary matrices E_{1}, E_{2} such that $E_{1} E_{2} A=D$

SOLUTION 1.2. By staring at the row operations from A to D and $E_{1} E_{2}=D$, we see that the first row operation corresponds to E_{2} and the second row operation corresponds to E_{1}. Hence $E_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $E_{1}=$ $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$
(iii) Let $D=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]\left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right]$. Find the matrix D without doing the actual multiplication of these 5 matrices [Stare well and think!]

SOLUTION 1.3. By staring, we observe that the first 4 matrices are elementary matrices. Hence
$\left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right] \overbrace{-2 R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cc}2 & 4 \\ 0 & -6\end{array}\right] \overbrace{2 R_{2}}\left[\begin{array}{cc}2 & 4 \\ 0 & -12\end{array}\right] \stackrel{\overbrace{-R_{2}+R_{1} \rightarrow R_{1}}}{\sim}$
$\left[\begin{array}{cc}2 & 16 \\ 0 & -12\end{array}\right] \stackrel{\overbrace{2 R_{2}+R_{1} \rightarrow R_{1}}}{ }\left[\begin{array}{cc}2 & -8 \\ 0 & -12\end{array}\right]=D$

QUESTION 2. (i) Let A be an $n \times n$ invertible matrix. Convince me (i.e. prove) that if a is an eiginvalue of A, then a^{-1} is an eigenvalue of A^{-1}. Also, convince me that $E_{a}=E_{a^{-1}}$.

SOLUTION 2.1. Since a is an eigenvalue of A and A is invertible, we conclude that $a \neq 0$ and there exists a nonzero point Q in R^{n} such that $A Q^{T}=a Q^{T}$. Multiply both sides with A^{-1}, we get $Q^{T}=a A^{-1} Q$. Thus $A^{-1} Q^{T}=\frac{1}{a} Q^{T}$. Thus $1 / a$ is an eigenvalue of A^{-1}.
As we learned from Elementary Math, to show that two sets, say F, K, are equal, we need to show that $F \subseteq K$ and $K \subseteq F$.
Hence we need to show that $E_{a} \subseteq E_{a^{-1}}$ and $E_{a^{-1}} \subseteq E_{a}$.
So, let $Q \in E_{a}$. We show $Q \in E_{a^{-1}}$. Thus $A Q^{T}=a Q^{T}$. Multiply both sides with A^{-1}, we get $Q^{T}=a A^{-1} Q$. Thus $A^{-1} Q^{T}=\frac{1}{a} Q^{T}$. Thus $Q \in E_{a^{-1}}$. Hence $E_{a} \subseteq E_{a^{-1}}$.
Now let $W \in E_{a^{-1}}$. We show $W \in E_{a}$. Hence $A^{-1} W^{T}=\frac{1}{a} W^{T}$. Multiply both sides with A. Thus $W^{T}=\frac{1}{a} A W^{T}$. Hence $A W^{T}=a W^{T}$. Hence $W \in E_{a}$, and therefore $E_{a^{-1}} \subseteq E_{a}$. Since $E_{a} \subseteq E_{a^{-1}}$ and $E_{a^{-1}} \subseteq E_{a}$, we conclude that $E_{a^{-1}}=E_{a}$.
(ii) Given A is a 3×3 diagnolizable matrix with eigenvalues 2 , -2 such that $E_{-2}=\operatorname{span}\{(1,2,3),(-1,-2,-2)\}$ and $E_{2}=\operatorname{span}\{(-1,-1,-3)\}$.
a. Find $|A|$ and Trace(A)

SOLUTION 2.2. Since A is diagnolizable, by staring at E_{-2} and E_{2} we conclude that 2 is repeated once and -2 is repeated twice. Hence $|\mathrm{A}|=(-2)(-2)(2)=8$. Trace $(A)=-2+-2+2=-2$.

NOTE that A is diagnolizable is not needed in this question! right?

b. Find a diagonal matrix D and an invertible matrix Q such that $D=Q A Q^{-1}\left(\right.$ Do not calculate $\left.Q^{-1}\right)$.

SOLUTION 2.3. As explained in class, many possibilities. For example: $D=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2\end{array}\right], Q=$ $\left[\begin{array}{lll}1 & -1 & -1 \\ 2 & -1 & -2 \\ 3 & -3 & -2\end{array}\right]$
c. Find $C_{A^{-1}}(\alpha)$.

SOLUTION 2.4. From question (2), we conclude that $\frac{-1}{2}, \frac{-1}{2}, \frac{1}{2}$ are the eigenvalues of A^{-1}. Hence $C_{A^{-1}}(\alpha)=$ $\left(\alpha+\frac{1}{2}\right)^{2}\left(\alpha-\frac{1}{2}\right)$.
d. Find $C_{A^{2}}$ and calculate A^{2}.

SOLUTION 2.5. Let Q, D as in Solution 2.3. Hence $Q^{-1} D Q=A$. Thus $Q^{-1} D^{2} Q=A^{2}$. Stare at D^{2}. You observe that $D^{2}=4 I_{3}$. Hence $4 Q^{-1} I_{3} Q=A^{2}$. Hence $A^{2}=4 I_{3}$. Thus $C_{A^{2}}(\alpha)=\left|\alpha I_{3}-4 I_{3}\right|=(\alpha-4)^{3}$.
(iii) Let A be an $n \times n$ matrix. Suppose that there is a real number r such that the sum of all numbers in each column of A equals r. Convince me that r is an eigenvalue of A.

SOLUTION 2.6. Consider the matrix A^{T}. Then the sum of all numbers in each row of A^{T} equals r. Hence $A^{T}\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right]=r\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right]$. Then r is an eigenvalue of A^{T}. We know that A^{T} and A have the same eigenvalues. Thus r is an
eigenvalue of A.
(iv) Let A be a 13×13 matrix. Convince me that A must have at least one real eigenvalue.

SOLUTION 2.7. Note that the degree of $C_{A}(\alpha)$ is 13 . So we set $C_{A}(\alpha)=0$. Common knowledge (public knowledge) every polynomial of odd degree must have at least one real root. Thus A must have at least one real eigenvalue.
(v) Let A be a 4×4 matrix and $C_{A}(\alpha)=(\alpha-3)^{2}(\alpha-2)^{2}$ such that $E_{3}=\operatorname{span}\{(2,1,1,1)\}$ and $E_{2}=\operatorname{span}\{(-2,1,0,1)\}$.
a. What is the solution set to the system $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=5\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$?

SOLUTION 2.8. By staring at $C_{A}(\alpha)$. We conclude that 5 is not an eigenvalue of A. Hence the solution set is $\{(0,0,0,0)\}$.
b. Let $F=5 I_{4}+2 A^{-1}+3 A$. Give me a nonzero point Q and a real number a such that $F Q^{T}=a Q^{T}$.

SOLUTION 2.9. Fist observe that A^{-1} exists, since $|A|=(2)(2)(3)(3)=36 \neq 0$. Choose any nonzero point Q in E_{2} or E_{3}. We Know from solution 2.1 that $Q \in E_{\frac{1}{2}}$ or $Q \in E_{\frac{1}{3}}$ (note $E_{\frac{1}{2}}$ and $E_{\frac{1}{3}}$ are eigenspaces of A^{-1}). Let us choose $Q=(-2,1,0,1) \in E_{2}$. Then $F Q^{T}=\left[5 I_{4}+2 A^{-1}+3 A\right] Q^{T}=5 I_{4} Q^{T}+2 A^{-1} Q^{T}+3 A Q^{T}=5 Q^{T}+2\left(0.5 Q^{T}\right)+3\left(2 Q^{T}\right)=$ $5 Q^{T}+Q^{T}+6 Q^{T}=12 Q^{T}$ (i.e., 12 is an eigenvalue of F).

QUESTION 3. Let $A=\left[\begin{array}{ccccc}-c_{5} & a_{2} & a_{3} & -2 c_{1} & a_{5} \\ c_{3} & b_{2} & b_{3} & -c_{1} & b_{5} \\ c_{1} & -2 & c_{3} & -1 & c_{5}\end{array}\right]$. Given A is row-equivalent to $B=\left[\begin{array}{ccccc}2 & 4 & 4 & 2 & 4 \\ 0 & 1 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a)Find the matrix A.

SOLUTION 3.1. Note A_{i} means the ith column of A and ${ }_{i} A$ means the ith row of A

By staring, $\operatorname{Row}(A)=\operatorname{span}\{(2,4,4,2,4),(0,1,1,3,1)\}$. As explained, each row of A is a linear combination of (2 , $4,4,2,4),(0,1,1,3,1)$

Hence ${ }_{3} A=\left(c_{1},-2, c_{3},-1, c_{5}\right)=a(2,4,4,2,4)+b(0,1,1,3,1)=(2 a, 4 a+b, 4 a+b, 2 a+3 b, 4 a+b)$. Find a, b. Hence $4 a+b=-2$ and $2 a+3 b=-1$. Now solve! we get $a=-0.5$ and $b=0$. Thus ${ }_{3} A=(-1,-2,-2,-1,-2)$. Hence $c_{1}=-1, c_{3}=-2, c_{5}=-2$.

Similarly ${ }_{2} A=\left(-2, b_{2}, b_{3}, 1, b_{5}\right)=a(2,4,4,2,4)+b(0,1,1,3,1)=(2 a, 4 a+b, 4 a+b, 2 a+3 b, 4 a+b)$. Find a, b. Hence $2 a=-2$ and $2 a+3 b=1$. Now solve! we get $a=-1$ and $b=1$. Thus ${ }_{2} A=(-2,-3,-3,1,-3)$.

Similarly ${ }_{1} A=\left(2, a_{2}, a_{3}, 2, a_{5}\right)=a(2,4,4,2,4)+b(0,1,1,3,1)=(2 a, 4 a+b, 4 a+b, 2 a+3 b, 4 a+b)$. Find a, b. Hence $2 a=2$ and $2 a+3 b=2$. Now solve! we get $a=1$ and $b=0$. Thus ${ }_{1} A=(2,4,4,2,4)$.

Hence $A=\left[\begin{array}{ccccc}2 & 4 & 4 & 2 & 4 \\ -2 & -3 & -3 & 1 & -3 \\ -1 & -2 & -2 & -1 & -2\end{array}\right]$.
(b) Find a basis of $\operatorname{Col}(A)$.

As explained, to find a basis for $\operatorname{Col}(\mathrm{A})$. We stare at B , we locate the columns in B that have the "leaders". Here we see that the leaders are located in B_{1} and B_{2}. Thus we MUST choose A_{1}, A_{2} from A to form a basis for $\operatorname{Col}(A)$.

Hence a basis for $\operatorname{Col}(\mathrm{A})$ is Badawi $=\{(2,-2,-1),(4,-3,-2)\}$.
Hence $\operatorname{Col}(A)=\operatorname{span}\{(2,-2,-1),(4,-3,-2)\}$.
QUESTION 4. Given $B=\{(0,1,1),(1,0,-1),(2,-2,-1)\}$ is a basis for R^{3} and $Q=(2,6,-1) \in R^{3}$. Find $[Q]_{B}$.
SOLUTION 4.1. Form a matrix $P, 3 \times 3$, where each column of P is a point in B. Now you may solve the system $P X=Q^{T}$. Then the point in the solution set is $[Q]_{B}$. Another way, find P^{-1}. Then $P^{-1} Q^{T}=[Q]_{B}$.

QUESTION 5. Let $D=\operatorname{span}\{(3 a+5 b+2,-2 b+1,6 a+8 b+5,6 b-3,3 a+3 b+3) \mid a, b \in R\}$.
(a) Convince me that D is a subspace of R^{5}.

SOLUTION 5.1. As explained, D will be a subspace "if each coordinate can be written as linear combination of linear variables." There are many ways. For example: Let $w=3 a+5 b+2, v=-2 b+1$. Note that $w, v \in R$ (since a, b in R). Hence $6 a+8 b+5=2 w+v, 6 b-3=-3 v, 3 a+3 b+3=w+v$.

Thus $D=\operatorname{span}\{(w, v, 2 w+v,-3 v, w+v) \mid w, v \in R\}$. Hence $D=\operatorname{span}\{(1,0,2,0,1),(0,1,1,-3,1)\}$
(b) Find an orthogonal basis of D.

QUESTION 6. Let $A=\left[\begin{array}{cccc}2 & 4 & 1 & -3 \\ -2 & b_{2} & b_{3} & b_{4} \\ -2 & -4 & c_{3} & c_{4} \\ -2 & -4 & -1 & d_{4}\end{array}\right]$. Assume that a point $Q=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is selected randomly from R^{4}. Find all possible values of $b_{2}, b_{3}, b_{4}, c_{3}, c_{4}, d_{4}$ so that the system $A\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right]=Q^{T}$ has a unique solution.

SOLUTION 6.1. We know that the claim will be correct iff $|A| \neq 0$. So we set $|A| \neq 0$. So let us calculate $|A|$.

$$
A=\left[\begin{array}{cccc}
2 & 4 & 1 & -3 \\
-2 & b_{2} & b_{3} & b_{4} \\
-2 & -4 & c_{3} & c_{4} \\
-2 & -4 & -1 & d_{4}
\end{array}\right] \overbrace{R_{1}+R_{2} \rightarrow R_{2}} \overbrace{R_{1}+R_{3} \rightarrow R_{3}} \overbrace{R_{1}+R_{4} \rightarrow R_{4}} \quad B=\left[\begin{array}{cccc}
2 & 4 & 1 & -3 \\
0 & b_{2}+4 & b_{3}+1 & b_{4}-3 \\
0 & 0 & c_{3}+1 & c_{4}-3 \\
0 & 0 & 0 & d_{4}-3
\end{array}\right] .
$$

Hence $|A|=|B|=2\left(b_{2}+4\right)\left(c_{3}+1\right)\left(d_{4}-3\right)$.
Thus $|A| \neq 0$ if $b_{2} \neq-4, c_{3} \neq-1, d_{4} \neq 3, b_{3}, b_{4}, c_{4} \in R$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

3.3 Exam Two

Exam TWO, MTH 512 , Fall 2019

Ayman Badawi

QUESTION 1. Let $T: V \rightarrow V$ be a linear transformation that is invertible, where V is an inner product vector space over R. Assume that $T^{*}=T^{-1}$. Convince me that $\langle T(v), T(w)\rangle=\langle v, w\rangle$ for every $v, w \in V$.

QUESTION 2. Let T be a linear transformation from a vector space V over R to R such that $T\left(v_{1}\right)=2, T\left(v_{2}\right)=4$, and $T\left(v_{3}\right)=7$, where $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis of V. Convince me that there is a UNIQUE point $Q \in R^{3}$ such that $T(v)=<Q, X>$, where $X=[v]_{B}$ (the coordinate of v with respect to B), and $<,>$ is the normal dot product on R^{3}.
QUESTION 3. Let $T: P_{5} \rightarrow R^{4}$ such that $M_{B, B^{\prime}}=\left[\begin{array}{ccccc}1 & 2 & 4 & 6 & -2 \\ 0 & 2 & 4 & 3 & 5 \\ 0 & 4 & 8 & 6 & 10 \\ 3 & 6 & 12 & 18 & -6\end{array}\right]$ be the matrix presentation of T with respect to $B=\left\{x^{4}, 1+x^{4}, 1+x+x^{4}, x^{3}+x^{4}, x^{2}+x^{4}\right\}$ and $B^{\prime}=\{(2,4,6,6),(-2,4,6,6),(-2,-4,6,6),(-2,-4,-6,6)\}$.
(i) Find the fake standard matrix presentation of T.
(ii) Find $T\left(4 x^{2}+x^{4}\right)$. Then find all (describe all) elements in P_{5}, say v, so that $T(v)=T\left(4 x^{2}+x^{4}\right)$.

QUESTION 4. Given $B=\left\{T_{1}, T_{2}, T_{3}, T_{4}\right\}$ is a basis for $\operatorname{Hom}\left(P_{2}, P_{2}\right)$, where $T_{1}: P_{2} \rightarrow P_{2}$ such that $T_{1}\left(a_{1}+a_{2} x\right)=$ $\left(a_{1}+a_{2}\right)+a_{1} x$ and $T_{2}: P_{2} \rightarrow P_{2}$ such that $T_{2}\left(a_{1}+a_{2} x\right)=\left(a_{1}+a_{2}\right) x$. Find T_{3} and T_{4}. (i.e., you must show that $T_{1}, T_{2}, T_{3}, T_{4}$ are independent)

QUESTION 5. Let V be an inner product space over R. Convince me that $\|v+w\|^{2}=\|v\|^{2}+\|w\|^{2}$ for every orthogonal elements $v, w \in V$.
QUESTION 6. Let $W=\operatorname{span}\left\{A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right], K=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right\}$ Find a basis for $W^{\perp}\left(\right.$ note $\left.<A, B>=\operatorname{Trace}\left(B^{T} A\right)\right)$
QUESTION 7. Let $T: R^{4} \rightarrow R^{4}$ be a linear transformation (operator) such that the matrix presentation of T with respect to the basis $B=\{(1,1,1,1),(-1,1,1,1),(-1,-1,1,1),(-1,-1,-1,1)\}$ is $M_{B}=\left[\begin{array}{cccc}0 & 0 & 0 & -4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0\end{array}\right]$.
(i) Find $C_{T}(x)$ and $m_{T}(x)$.
(ii) Convince me that T is diagnolizable.
(iii) Find the standard matrix presentation of T^{2}
(iv) Let $F=5 T^{2}-T^{4}-I$ (then F is an operator from R^{4} into R^{4}). Convince me that 3 is an eigenvalue of F. Find an orthonormal basis of $E_{3}(F)$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

3.4 Solution to Exam II

Exam TWO, MTH 512 , Fall 2019

Ayman Badawi

QUESTION 1. Let $T: V \rightarrow V$ be a linear transformation that is invertible, where V is an inner product vector space over R. Assume that $T^{*}=T^{-1}$. Convince me that $\langle T(v), T(w)\rangle=\langle v, w\rangle$ for every $v, w \in V$.

Proof. Let $v \in V$. Then $\langle T(v), T(w)\rangle=\left\langle v, T^{*} T(w)\right\rangle=\left\langle v, T^{-1} T(v)\right\rangle=\langle v, v\rangle$
QUESTION 2. Let T be a linear transformation from a vector space V over R to R such that $T\left(v_{1}\right)=2, T\left(v_{2}\right)=4$, and $T\left(v_{3}\right)=7$, where $B=\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis of V. Convince me that there is a UNIQUE point $Q \in R^{3}$ such that $T(v)=\langle Q, X\rangle$, where $X=[v]_{B}$ (the coordinate of v with respect to B), and $<,>$ is the normal dot product on R^{3}.

Proof. Let $v \in V$. Then $v=a v_{1}+b v_{2}+c v_{3}$. Hence $[v]_{B}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$. Now $M_{B}=\left[\begin{array}{lll}2 & 4 & 7\end{array}\right]$ is the matrix presentation of T with respect to B. Hence $T(v)=M_{B}[v]_{B}$. Thus let $Q=(2,4,7) \in R^{3}$. Then $T(v)=<Q,[v]_{B}>$. Now we show that Q is unique. Assume $F=(m, n, d) \in R^{3}$ such that $T(v)=<F,[v]_{B}>$. Then $T\left(v_{1}\right)=<F,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]>=m=2$, $T\left(v_{2}\right)=<F,\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]>=n=4$, and $T\left(v_{3}\right)=<F,\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]>=d=7$. Thus $F=Q$.
QUESTION 3. Let $T: P_{5} \rightarrow R^{4}$ such that $M_{B, B^{\prime}}=\left[\begin{array}{ccccc}1 & 2 & 4 & 6 & -2 \\ 0 & 2 & 4 & 3 & 5 \\ 0 & 4 & 8 & 6 & 10 \\ 3 & 6 & 12 & 18 & -6\end{array}\right]$ be the matrix presentation of T with respect to $B=\left\{x^{4}, 1+x^{4}, 1+x+x^{4}, x^{3}+x^{4}, x^{2}+x^{4}\right\}$ and $B^{\prime}=\{(2,4,6,6),(-2,4,6,6),(-2,-4,6,6),(-2,-4,-6,6)\}$.
(i) Find the fake standard matrix presentation of T.

To find M_{f} (fake M), we use $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ as the standard basis of P_{5} and $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ as the standard basis of R^{4}. Let $Q=\left[\begin{array}{cccc}2 & -2 & -2 & -2 \\ 4 & 4 & -4 & -4 \\ 6 & 6 & 6 & -6 \\ 6 & 6 & 6 & 6\end{array}\right]$. Note that x^{4} is viewed as
$(0,0,0,0,1)$ in R^{5} (since I am using $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ as the standard basis of P_{5}, if you use $\left\{x^{4}, x^{3}, x^{2}, x, 1\right\}$ as the standard basis of P_{5}, then x^{4} is viewed as $(1,0,0,0,0)$ in R^{5}. So let $P=\left[\begin{array}{ccccc}0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1\end{array}\right]$.
Hence we know that $M_{B, B^{\prime}}=Q^{-1} M_{f} P$. Thus $M_{f}=Q M_{B, B^{\prime}} P^{-1}$. Now use the available (multiplication, Inverse) software and do the calculation (make sure that you know how to use the software correctly).
(ii) Use (i) and find Range (T) and $Z(T)$.

To find Range(T): Put M_{f} in the available software, Transform M_{f} to echelon form, say B. Stare at the columns in B that have the leaders. Here, TWO columns in B will have the leaders. So $I N($ Range $(T))=2$. YOU MUST FIND THE CORRESPONDING TWO COLUMNS in M_{f} (class notes). Thus Range $(T)=\operatorname{span}\{$ The corresponding two columns in M_{f} \}.
To find $\mathrm{Z}(\mathrm{T})$: Solve the homogeneous system $M_{f} X=0$. Put the system in the available software. The software will not write it as span. From class notes, you know how to write it as span. In this question, the solution set of the homogeneous system $=\operatorname{span}\left\{3\right.$ independent points in $\left.R^{5}\right\}$. Note that $Z(F)$ "lives" inside P_{5}. So translate each point to a polynomial in P_{5} (see class notes). Thus $Z(T)=\operatorname{span}\left\{P_{1}, P_{2}, P_{3}\right\}$.
(iii) Find $T\left(4 x^{2}+x^{4}\right)$. Then find all (describe all) elements in P_{5}, say v, so that $T(v)=T\left(4 x^{2}+x^{4}\right)$.

To find $T\left(4 x^{2}+x^{4}\right)$. Do this multiplication (using the software) $M_{f}\left[\begin{array}{l}0 \\ 0 \\ 4 \\ 0 \\ 1\end{array}\right]$. Done.
This is an application of a question in one of the home works. $T^{-1}\left(4 x^{2}+x^{4}\right)=\left\{4 x^{2}+x^{4}+h \mid h \in Z(T)\right\}$. You already calculated $Z(T)$. Done.

QUESTION 4. Given $B=\left\{T_{1}, T_{2}, T_{3}, T_{4}\right\}$ is a basis for $\operatorname{Hom}\left(P_{2}, P_{2}\right)$, where $T_{1}: P_{2} \rightarrow P_{2}$ such that $T_{1}\left(a_{1}+a_{2} x\right)=$ $\left(a_{1}+a_{2}\right)+a_{1} x$ and $T_{2}: P_{2} \rightarrow P_{2}$ such that $T_{2}\left(a_{1}+a_{2} x\right)=\left(a_{1}+a_{2}\right) x$. Find T_{3} and T_{4}. (i.e., you must show that $T_{1}, T_{2}, T_{3}, T_{4}$ are independent)

All of you got it right. For example let $T_{3}\left(a_{1}+a_{2} x\right)=a_{2}, T_{4}\left(a_{1}+a_{2} x\right)=a_{2} x$
QUESTION 5. Let V be an inner product space over R. Convince me that $\|v+w\|^{2}=\|v\|^{2}+\|w\|^{2}$ for every orthogonal elements $v, w \in V$.
$\|v+w\|^{2}=<v+w, v+w>=<v, v>+2\left\langle v, w>+\langle w, w\rangle=\|v\|^{2}+\|w\|^{2}\right.$ (since v, w are orthogonal, i.e., $<v, w>=0$.)

QUESTION 6. Let $W=\operatorname{span}\left\{A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right], K=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right\}$ Find a basis for $W^{\perp}\left(\right.$ note $\left.<A, B>=\operatorname{Trace}\left(B^{T} A\right)\right)$
Let $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Hence $\operatorname{Trace}\left(B^{T} A\right)=0$ and $\operatorname{Trace}\left(B^{T} K\right)=0$. Hence $a+b=0$ and $a+d=0$. Solution set to the homogeneous system is $\{(a,-a, c,-a) \mid a, c \in R\}=\operatorname{span}\{(1,-1,0,-1),(0,0,1,0)\}$. Now translate to matrices. Hence $W^{\perp}=\operatorname{span}\left\{\left[\begin{array}{ll}1 & -1 \\ 0 & -1\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\right\}$. [some of you used the fake-dot product on $R^{2 \times 2}$, so I accepted that.. but next time I will not]

QUESTION 7. Let $T: R^{4} \rightarrow R^{4}$ be a linear transformation (operator) such that the matrix presentation of T with respect to the basis $B=\{(1,1,1,1),(-1,1,1,1),(-1,-1,1,1),(-1,-1,-1,1)\}$ is $M_{B}=\left[\begin{array}{cccc}0 & 0 & 0 & -4 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0\end{array}\right]$.
(i) Find $C_{T}(x)$ and $m_{T}(x)$. By staring, M_{B} is the companion matrix of the polynomial $x^{4}-5 x^{2}+4$. Hence we know (by class notes) that $C_{T}(x)=m_{T}(x)=x^{4}-5 x^{2}+4$.
(ii) Convince me that T is diagnolizable. Since $m_{T}(x)=x^{4}-5 x^{2}+4=\left(x^{2}-1\right)\left(x^{2}-4\right)=(x-1)(x+1)(x-2)(x+2)$ (i.e., $m_{T}(x)$ is a product of distinct linear factors), by class notes T is diagnolizable.
(iii) Find the standard matrix presentation of T^{2}

Two solutions are accepted:
(1) Assume B is the basis for the domain and the co-domain. Hence $P=\left[\begin{array}{cccc}1 & -1 & -1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & 1 & 1\end{array}\right]$

We know that $M_{B}=P^{-1} M P$. Hence $M=P M_{B} P^{-1}$ is the standard matrix presentation of T. By class notes (old HW), the standard matrix presentation of T^{2} is M^{2}. Use the available software (multiplication, inverse) to find M and M^{2}.
(2)Assume B is the basis for the domain and the standard basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is the basis for the co-domain. Hence
$P=\left[\begin{array}{cccc}1 & -1 & -1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & 1 & 1 & -1 \\ 1 & 1 & 1 & 1\end{array}\right]$, and $Q=I_{4}$.
We know that $M_{B}=I_{4}^{-1} M P$. Hence $M=I_{4} M_{B} P^{-1}=M_{B} P^{-1}$ is the standard matrix presentation of T. By class notes (old HW), the standard matrix presentation of T^{2} is M^{2}. Use the available software (multiplication, inverse) to find M and M^{2}.
(iv) Let $F=5 T^{2}-T^{4}-I$ (then F is an operator from R^{4} into R^{4}). Convince me that 3 is an eigenvalue of F. Find an orthonormal basis of $E_{3}(F)$.

Process of thinking: By staring $5 T^{2}-T^{4}-I$ is some how related to $C_{T}(x)=x^{4}-5 x^{2}+4$ (some of you observed that). We know (class notes) $C_{T}(T)=T^{4}-5 T^{2}+4 I=0$. Thus $3 I=5 T^{2}-T^{4}-I=F$. Hence $3 I(v)=F(v)=3 v$ for every $v \in R^{4}$. Hence 3 is an eigenvalue of F and $E_{3}(F)=R^{4}$. Hence an orthonormal basis is $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. DONE Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

3.5 Final Exam

Final Exam, MTH 512, Fall 2019

Ayman Badawi

Score $=\frac{}{100}$

QUESTION 1. (4 points) Let $T: V \rightarrow V$ be a linear transformation that is invertible, where V is an inner product vector space over R. Assume that $T^{*}=T^{-1}$. Assume that $T(v), T(w)$ are nonzero orthogonal elements of V for some nonzero elements $v, w \in V$. Convince me that v, w are orthogonal elements in V.

QUESTION 2. (5 points) Let $T: V \rightarrow V$ be a linear transformation where V is a vector spaces over R and $I N(V)=3$ (i.e., $\operatorname{dim}(V)=3$). Given $M=\left[\begin{array}{lll}0 & 0 & 2 \\ 0 & 3 & 5 \\ 2 & 0 & 0\end{array}\right]$ is the matrix presentation of T with respect to an ordered basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. Convince me that T is invertible. Find $T^{-1}\left(v_{3}\right)$. Convince me that $T^{2}-4 T+3 I: V \rightarrow V$ is not invertible (singular).

QUESTION 3. (4 points) Let $T: V \rightarrow V$ be a linear transformation. Consider the linear transformation $F=2 T^{3}+$ $4 T^{2}+512 I: V \rightarrow V$. Let $W=Z(F)(\operatorname{Ker}(F))$. Convince me that $T(w) \in W$ for every $w \in W$.

QUESTION 4. Let $T: P_{5} \rightarrow R^{4}$ such that $M_{B, B^{\prime}}=\left[\begin{array}{ccccc}1 & 1 & 1 & -1 & -1 \\ -1 & -1 & -1 & 1 & 1 \\ 2 & 2 & 2 & -2 & -2 \\ 3 & 3 & 3 & -3 & -3\end{array}\right]$ be the matrix presentation of T with
respect to $B=\left\{x^{4}, 1+x^{4}, 1+x+x^{4}, x^{2}+x^{4}, x^{3}+x^{4}\right\}$ and $B^{\prime}=\{(1,1,1,1),(-1,1,0,1),(-2,-2,1,1),(-1,-1,-1,0)\}$.
(i) (4 points) Find the fake standard matrix presentation of T. (note that the Fake Matrix Presentation of T is with respect to $\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ and $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$). (you may use the available software)
(ii) ($\mathbf{3}$ points) Write Range(T) as span of independent points.(you may use the available software)
(iii) (3 points) Write $Z(T)(\operatorname{Ker}(T))$ as span of some independent polynomials.(you may use the help of the available software)
(iv) (2 points) Find $T\left(5+2 x-4 x^{3}\right)$. Then find $T^{-1}\left(5+2 x-4 x^{3}\right)$.

QUESTION 5. Let $T: R^{3} \rightarrow R^{3}$ such that $T(1,0,1)=(1,1,1), T(-1,1,1)=(-2,-2,-2)$, and $T(-1,0,1) \in Z(T)$. Consider the DOT PRODUCT on R^{n}.
(i) (4 points) Find $T^{*}: R^{3} \rightarrow R^{3}$.
(ii) (2 points) write Range of T^{*} as span of some independent points.(you may use the help of the available software)
(iii) ($\mathbf{3}$ points) Write $Z(T)$ as span of some independent points.(you may use the help of the available software)
(iv) (3 points) Find $(Z(T))^{\perp}$ (i.e., find the subspace of R^{3} that is orthogonal to $Z(T)$).(you may use the help of the available software) Stare at your answer in (ii) and your answer in (iv). Any connection.

QUESTION 6. (5 points) Consider the normal dot product on R^{n}. Let A be a symmetric matrix over R. Convince me that all eigenvalues of A are real.

QUESTION 7. (5 points) Let $T: V \rightarrow V$ be a linear transformation. Assume that $T^{2}=T$. Convince me that $\operatorname{Range}(T) \cap Z(T)=0_{v}$.

QUESTION 8. (4 points) Consider the normal dot product on R^{n}. Let A be a matrix (of course $n \times n$) such that $A^{T}=A$ over R. Assume that for some nonzero points V and W in R^{n}, we have $A V^{T}=a V^{T}$ and $A W^{T}=b W^{T}$ for some real numbers a, b such that $a \neq b$. Convince me that V and W are orthogonal.

QUESTION 9. (5 points) Consider the normal dot product on R^{n}. Let A be a matrix (of course $n \times n$) such that A is nonsingular (i.e., invertible) and $A^{T}=A$ over R. Let $B=A^{2}$. Convince me that $B^{T}=B, B$ is invertible, and all eigenvalues of B are real and each eigenvalue is strictly larger than 0 (i.e., B is positive definite)

QUESTION 10. Let $J=J_{-1}^{(2)} \oplus J_{2}^{(2)} \oplus J_{-1} \oplus J_{2}$ be the Jordan form of a matrix A.
(i) (3 points) Find $C_{A}(x)$
(ii) (3 points) Find $m_{A}(x)$
(iii) (3 points) For each eigenvalue a of A find $I N\left(E_{a}\right)$ (i.e., $\operatorname{dim}\left(E_{a}\right)$).
(iv) (3 points) Find the rational form of A.
(v) (3 points) Is A diagnolizable? explain?

QUESTION 11. Let $A=\left[\begin{array}{cccc}0 & -1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 9 \\ 0 & 0 & 1 & 0\end{array}\right]$
(i) (3 points)Find $C_{A}(x)$ (you may use the available software calculators) OR find it by HAND.
(ii) (4 points)Find $m_{A}(x)$ (you may use the available software calculators) OR find it by hand (maybe LONG)
(iii) (3 points) Find the Rational Form of A
(iv) (3 points) Find the Jordan Form of A

QUESTION 12. (5 points) Let $T: V \rightarrow V$ be a linear transformation that is invertible, where V is a finite dimensional inner product vector space over R. Assume that $T^{*}=-T$. Convince me that

$$
C_{T}(x)=\left(x^{2}+a_{1}\right)^{n_{1}}\left(x^{2}+a_{2}\right)^{n_{2}} \cdots\left(x^{2}+a_{m}\right)^{n_{m}}
$$

, where $a_{1}, a_{2}, \ldots, a_{m}$ are distinct nonzero positive real numbers, and n_{1}, \ldots, n_{m} are positive integers.

QUESTION 13. (5 points) Let $T: R^{3} \rightarrow R^{3}$ be a nonzero non-diagnolizable linear transformation. Given $T^{3}-4 T^{2}+$ $4 T=0$. Find all Jordan forms of the standard matrix presentation of T. Find all Rational forms of the standard matrix presentation of T.

QUESTION 14. (6 points) $A=\left[\begin{array}{ll}2 & 1 \\ 3 & 4\end{array}\right]$. Find the SMITH form of A over Z (i.e., find invertible matrices R, C over Z and a diagonal matrix D over Z (with special property as explained in class) such that $D=R A C$)

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Faculty information

Ayman Badawi, American University of Sharjah, UAE.
E-mail: abadawi@aus.edu

